ACADEMIC REGULATIONS (R18PG) COURSE STRUCTURE AND DETAILED SYLLABUS For

M.Tech.- Regular Two Year Post Graduate Degree Programe (Effective from 2018-19)

MASTER OF TECHNOLOGY IN RENEWABLE ENERGY

KANDULA SRINIVASA REDDY MEMORIAL COLLEGE OF ENGINEERING (UGC-Autonomous) Kadapa 516003, A.P

(Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC)

(An ISO 14001:2004 & 9001: 2015 Certified Institution)

E-mail: principal@ksrmce.ac.in

Website: www.ksrmce.ac.in

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS)

VISION & MISSION

VISION:

KSRMCE seeks to be recognized as one of the best engineering colleges in India in providing high standards of academics with most productive, creative learning environment by including research, innovation thoughts and producing graduates with human values & leadership qualities to serve nation.

MISSION:

M1: To provide high quality education in Engineering & Technology in order to bring out knowledgeable engineers.

M2: To creative environment a collaborative environment with stakeholders to take up need-based research and industry specific programs.

M3: To organize co-curricular and extracurricular activities for character and personality development to produce highly competent and motivated engineers and professionals to serve and lead the society.

DEPARTMENT OF MECHANICAL ENGINEERING

VISION & MISSION

VISION:

To evolve as a department of high repute in Mechanical Engineering and allied fields through effective teaching, learning process and research activities, operating with a sense of professional and social responsibility.

MISSION:

M1: To produce Mechanical Engineers with sound knowledge through quality teaching-learning process and well-designed curriculum.

M2: To induce critical thinking attitude and inculcate the use of modern tools through interdisciplinary research and develop entrepreneurial skills through industry-institute interaction.

M3: To provide opportunities/platforms for students to nurture leadership abilities and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES

PEO1: To apply engineering principles to develop products, processes or knowledge to solve mechanical and associated engineering problems for successful career in mechanical engineering and allied fields.

PEO2: To pursue higher education, research and development and engage in the process of life-long learning.

PEO3: To demonstrate leadership qualities, professional ethics, and communication skills and adapt current technologies to meet the societal requirements.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES

PSO 1: To apply their knowledge in the domain of engineering mechanics, thermal andfluid sciences to solve engineering problems utilizing advanced technology.

PSO 2: To successfully apply the principles of design, analysis and implementation of mechanical systems/processes which have been learned as a part of the curriculum?

PSO 3: To Develop and implement new ideas on product design and development with thehelp of modern CAD/CAM tools, while ensuring best manufacturing practices.

Regulations for PG Programs in Engineering (R18PG) (Effective from 2018-19)

Index

1.0	Nomenclature	1
2.0	Short Title And Application	1
3.0	Suspension And Amendment Of Rules	2
4.0	Requirements For Admission	2
5.0	Structure Of The M. Tech Course	2
6.0	Registration And Enrolment	3
7.0	Assessment Procedure – Internal Tests And End Examinations	3
8.0	Method Of Assigning Letter Grades And Grade Points	4
9.0	Requirements For Completing Subjects	6
10.0	Requirements For Taking End Examinations	6
11.0	Revaluation Of End Examination Scripts	7
12.0	Supplementary End Examinations	7
13.0	Requirements For Award Of M. Tech Degree	8
14.0	Transitory Regulations	8

Curriculum and Syllabus.....10

KSRM College of Engineering, Kadapa-516003, AP

Regulations for PG Programs in Engineering (R18PG)

1.0 Nomenclature

- **1.1** *Academic Term*: Extent of time during which academic instructions are initiated and completed.
- **1.2** *Academic Year*: Academic Term of, approximately, one year duration that usually starts in June/July and ends in April/May next
- 1.3 Semester: Either of two Academic Terms that make up an Academic Year
- 1.4 *Major*: A specific field of study
- 1.5 *Minor*: An area outside of, or complementary to, a Major
- **1.6** *Subject*: An area of knowledge that is studied as part of a Course
- 1.7 *Core*: A subject that is mandatory for a Major course of study
- **1.8** *Elective*: A subject that is selected for study to suit one's individual needs
- **1.9** *Audit Subject*: A subject that is studied to meet certain requirements but has no credits assigned to it
- **1.10** *Humanities subjects*: Subjects that describe and interpret human achievements, problems and historical changes at individual and societal levels covering the disciplines of literature, history, and philosophy
- **1.11** *Social Sciences subjects*: Subjects that describe the mental and behavioural activities of individuals, groups, organizations, institutions, and nations covering the disciplines of anthropology, economics, linguistics, political science, and psychology
- 1.12 Exam: A test to measure one's progress, knowledge, or ability in a subject
- 1.13 Credit: A numerical weight given to a subject
- **1.14** *Grade*: A numerical or alphabetic designation measuring the level of achievement in an exam
- **1.15** *Attendance*: Physical presence of oneself in a classroom/laboratory forpurpose of a scheduled academic instruction
- 1.16 Course: A series of subjects that constitute a Major field of study
- **1.17** *Branch*: Same as Course
- **1.18** *Program*: Same as Course
- **1.19** *Specialization*: Same as branch
- 1.20 Degree: An academic title conferred to honour distinguished achievement

2.0 Short Title and Application

- **2.1** These rules and regulations may be called as R18 PG and come into force from Academic Year 2018-19 and exist until superseded by new regulations
- **2.2** These rules and regulations are applicable to all post graduate courses in engineering and technology leading to Master's Degree in Technology (M. Tech)
- **2.3** The Specializations offered, at present, are:
 - 2.3.1 Geotechnical Engineering
 - 2.3.2 Power Systems

- 2.3.3 Renewable Energy
- 2.3.4 Embedded System & VLSI
- 2.3.5 Artificial Intelligence & Data Science
- **2.4** The Institute may offer new Specializations in future to which these rules and regulations will be applicable

3.0 Suspension and Amendment of Rules

- **3.1** Academic Council has the authority to suspend a rule temporarily
- 3.2 Academic Council has the authority to amend a rule
- **3.3** For affirmative action on any suspension or amendment of a rule, an affirmative vote of three-fifths of the members present and voting shall be required in Academic Council

4.0 Requirements for Admission

- **4.1** At present, admissions into first semester of various Specializations are governed by Government and the Affiliating University. The eligibility criteria and procedure for admission are prescribed by Government and Affiliating University
- 4.2 A student is not allowed change of Specialization after admission
- **4.3** A student must fulfil medical standards required for admission
- **4.4** The selected students are admitted into first semester after payment of the prescribed fees

5.0 Structure of the M. Tech course

- **5.1** *Duration*: The duration of M. Tech degree course is four semesters
- **5.2** *Working Days*: Calendar for any semester shall be announced at least four weeks before its commencement. Minimum number of working days is 90 per semester
- **5.3** *Curriculum*: Each Specialization shall have core, elective and audit subjects. The curriculum for each Specialization shall be approved by its corresponding Board of Studies and then by the Academic Council
- **5.4** *Credits*: All subjects that are assessed for marks have credits assigned to them. The credits assigned to subjects shall be given in curriculum. The total number of credits for entire course is 68 for all Specializations. The distribution of total credits semester-wise is given in Table 1

Semester	Total Credits
First Semester	18
Second Semester	18
Third Semester	16
Fourth Semester	16
Total for entire course	68

Table 1 Semester-wise Total Credits

- 5.5 The curriculum and syllabus is given in Annexure-1 and Annexure-2 respectively
- **5.6** Responsibility and Advising: It is the responsibility of the student to understand and know the regulations and requirements to earn the degree. Each student admitted in to the degree programs is assigned to a Faculty Advisor who assists the student in designing an effective program of study. Students should consult their Faculty Advisors for selection of electives and for general advice on academic program

6.0 Registration and Enrolment

- **6.1** Prior to opening of each semester, every student shall register for all the creditbearing and audit subjects listed in curriculum of the semester. Excepting first semester, the registration for a semester shall be done during a specified week after end examinations of previous semester. In first semester, the registration shall be done within six working days from date of opening. Recommendation of Faculty Advisor is needed for registration
- **6.2** Late registration will be permitted with a fine, decided from time to time, up to six working days from the last date specified for registration
- **6.3** A student will be eligible for registration for a semester if she or he i) is promoted to that semester, ii) has cleared all fees to the Institute, library and hostel of previous semester, and iii) is not disqualified for registration by a disciplinary action of the Institute
- **6.4** A student will be enrolled and allowed to attend the classes on successful registration and payment of necessary fees to Institution, library, and hostel
- **6.5** Registration and enrolment will be controlled by the Office of the Controller of Examinations.

7.0 Assessment Procedure – Internal Tests and End Examinations

- **7.1** Performance of students in all subjects is assessed continuously through internal assessment tests and an End examination
- 7.2 Allocation of internal assessment and End examination marks
 - 7.2.1 For theory subjects, the allocation is 40 marks for internal assessment and 60 marks for End examination totalling 100 marks
 - 7.2.2 For laboratory/project work subjects, the allocation is 50 marks for internal assessment and 50 marks for End examination totalling 100 marks
 - 7.2.3 For mini-project/mini-project with seminar total 100 marks are allocated for internal assessment. There shall be no end examination for this mini-project
 - 7.2.4 For all audit subjects the allocation is 40 marks for internal assessment and no allocation for End examination
- 7.3 Internal Assessment Examinations
 - 7.3.1 Internal assessment means performance evaluation of students by faculty members who teach the subjects
 - 7.3.2 For theory subjects, including audit subjects, the internal assessment shall be done by midterm tests. For each subject, two midterm tests will be

conducted for 40 marks each and the internal assessment mark is the better of two marks. If any student abstains for any midterm test, she or he will be awarded zero marks for that midterm test. There shall be no choice of questions in midterm tests

- 7.3.3 For laboratory/practical subjects, the internal assessment will be based on regular laboratory work over full semester. The assessment will be done by the faculty concerned. The students shall be informed sufficiently early of the procedure to be followed for internal assessment
- 7.3.4 For subjects like seminar, project-work, industrial training, and comprehensive viva-voce, the internal assessment will be done by a concerned Department Committee consisting of two senior faculty members and faculty guide of concerned student. The assessment procedure will be informed sufficiently early to the students
- 7.4 End examinations
 - 7.4.1 End examinations shall be conducted after completion of coursework in each semester
 - 7.4.2 The question papers for theory subjects shall be set by faculty members outside of the Institute. The external faculty members for question paper setting will be selected by the Principal
 - 7.4.3 Evaluation of answer scripts shall be done by faculty members from outside of the Institute selected by the Principal
 - 7.4.4 For laboratory subjects, end examination shall be conducted by a committee consisting of two internal examiners. One examiner shall be recommended by Head of Department of concerned Major, and the other examiner shall be appointed by the Principal
 - 7.4.5 For project work viva-voce, End examination shall be conducted by a committee consisting of one internal examiner, one external examiner, and the concerned guide of the student. Internal examiner shall be appointed by Head of Department of concerned Major, and the external examiner shall be appointed by the Principal
 - 7.4.6 If a student abstains from End examination of any subject, for any reason, she or he shall be awarded zero marks in that subject
 - 7.4.7 There is no end examination for audit subjects.

8.0 Method of Assigning Letter Grades and Grade Points

8.1 For all credit-bearing subjects, performance of a student in a subject is indicated by a letter grade that corresponds to absolute marks earned in that subject. Each letter grade is assigned a numeric Grade Point that is used to compute Grade Point Average on a scale of 0 to 10

- **8.2** Performance of a student in both internal assessment and End examination will be considered for awarding grades for credit bearing subjects. Total marks earned in a subject is the sum of marks obtained in internal and End examinations in that subject
- **8.3** Pass grade A+ to D+ is assigned to a subject based on total marks earned in that subject provided that a student earns at least i) 40% of marks in End examination marks and ii) 50% of marks in internal and End examination marks put together; otherwise fail grade F will be assigned to that subject
- **8.4** Grade I will be assigned to a subject if a disciplinary action is pending and is not resolved before publication of results. Office of Controller of Examinations shall resolve the pending disciplinary action within six working days from the date of publication of results and change the grade to any of A+ to D+ or F
- **8.5** Grade X will be assigned to a subject if a student abstains for End examination of that subject
- **8.6** The absolute marks and corresponding letter grade and grade points are given in Table2

Absolute Marks	Letter Grade	Grade Points	Remark
95-100	A+	10.0	Pass
90-94	А	9.5	Pass
85-89	A-	9.0	Pass
80-84	B+	8.5	Pass
75-79	В	8.0	Pass
70-74	B-	7.5	Pass
65-69	C+	7.0	Pass
60-64	С	6.5	Pass
55-59	C-	6.0	Pass
50-54	D+	5.5	Pass
0-49	F	0.0	Fail
-	Ι	0.0	Result Withheld
-	Х	0.0	Absent for End Exam

Table 2 Letter Grades and Grade Points

8.7 *SGPA*: Semester Grade Point Average indicates the performance of a student in all credit-bearing subjects of a semester. SGPA is calculated as the weighted average of Grade Points of all subjects of the semester with corresponding credits of subjects as weights. Audit subjects are not considered for SGPA calculation

- **8.8** *CGPA*: Cumulative Grade Point Average indicates the performance of a student in all terms up to and including the current semester under consideration. CGPA is calculated as the weighted average of SGPAs with total credits in each semester as the weights
- **8.9** *Grade Card*: All students shall be issued Grade Cards after the publication of results of a semester. Grade Card is a statement of performance of a student in a semester. It contains information about each registered subject: type of subject, allocated credits, and letter grade earned. SGPA and CGPA will also be indicated.

9.0 Requirements for Completing Subjects

- **9.1** A student shall complete all credit-bearing and audit subjects successfully to be eligible for award of degree
- **9.2** Credit-bearing subjects: A student is considered to have completed a creditbearing subject successfully and earned credits if she or he obtains a pass grade from A+ to D+ in that subject. If a student receives fail grade F or X in any subject, she or he must register for supplementary End examination for that subject as and when opportunity arises and improve grade to pass grade
- **9.3** *Audit subjects*: A student is considered to have successfully completed an audit subject if she or he earns at least 40% of marks in internal assessment marks. Supplementary exam for audit subjects: If a student fails in audit subject, she or he shall register for supplementary examination in that subject as and when the opportunity arises and pass that subject. The supplementary exam will be conducted for 40 marks covering the entire syllabus and student is deemed to have passed in the subject if she or he earns 16 marks (40% marks) in the supplementary exam, disregard of her or his performance in internal tests.

10.0 Requirements for taking End Examinations

- **10.1** A student is eligible to take regular End Examinations of current semester ifshe or he full fills the attendance requirement
- **10.2** A student shall be promoted from current semester to succeeding semesteron satisfying the attendance requirement
- **10.3** A student shall complete all credit-bearing and audit subjects successfully before taking End examination for project viva-voce
- 10.4 Attendance Requirement
 - 10.4.1 Attendance of students shall be recorded for credit-bearing and audit subjects as per the workload indicated in curriculum
 - 10.4.2 Total class-periods conducted shall be reckoned from beginning toend of a semester as published in academic calendar

- 10.4.3 Aggregate Percentage of Attendance is calculated using total number of classperiods attended as numerator and total number of class- periods conducted for the concerned subject as the denominator
- 10.4.4 A minimum aggregate attendance of 75% is required for promotion to succeeding semester
- 10.4.5 A student can appeal to the Principal for condoning deficiency in aggregate attendance if she or he gets 65% or more aggregate attendance presenting a valid reason for deficiency. Such a student will be granted promotion if the Principal pardons the deficiency. Principal has the right to reject the appeal if it is not satisfied with the performance of the student or the reason cited for deficiency of the attendance
- 10.4.6 A student earning less than 75% aggregate attendance will be denied promotion. A student who is not promoted on basis of attendance shall be removed from the rolls and shall register for the same semester when opportunity arises. The current semester record of the student is cancelled automatically.
- **10.5** A student can forgo promotion and opt to repeat the current team on written request. Recommendation of the concerned Faculty Advisor is required for cancellation of promotion. This option shall be exercised before the commencement of the End Examinations of the current term.

11.0 Revaluation of End Examination Scripts

- **11.1** Revaluation of End Examination scripts is allowed for theory subjects only by paying requisite fee
- **11.2** A Procedure for Revaluation: The script will be revaluated by an examiner appointed by the Principal. The maximum of revaluation and regular end examination marks will be awarded for that subject
- **11.3** A student can apply for revaluation in a subject only once.

12.0 Supplementary End Examinations

- **12.1** Students are eligible to take Supplementary examinations in subjects with fail grade F or X only
- **12.2** Supplementary examinations for even semester subjects will be conducted with regular examinations of odd semester subjects and vice versa
- **12.3** A student will be allowed to improve grade in any theory subject provided she or he has completed coursework of all semesters but before award of provisional/final degree.

13.0 Requirements for Award of M. Tech degree

- **13.1** Time Limit for completion of requirements for award of degree is four calendar years from the date of admission. A student who could not complete all the requirements in this time limit shall forego admission and will be removed from the rolls of the Institute
- **13.2** A student shall be eligible for award of degree provided she or he has:
 - 13.2.1 Registered and successfully completed all required credit-bearing and audit subjects with a total of 68 credits
 - 13.2.2 Secured a CGPA of 5.5 or more
 - 13.2.3 Cleared all dues to the Institute, library and hostel
 - 13.2.4 No disciplinary action is pending against her or him
 - 13.2.5 Satisfied any other stipulation of the affiliating University
- 13.3 Award of Class: Each student will be given class in degree based on CGPA asgiven in Table 3

Table 3 Class of Degree

Class of Degree	Range of CGPA
Second Class	>= 5.5 but <6.5
First Class	>= 6.5 but <7.5
First Class with Distinction	>= 7.5

13.4 Consolidated Grade Card and Degree will issued under the seal of affiliatingUniversity

14.0 Transitory Regulations

14.1 A student who initially joins the Institute in a previous Regulation and has to re-join in any semester of the present Regulations, due to any reason, shall be bound by the rules of the current Regulations. Board of Studies of the concerned Major will specify, extra or otherwise, academic coursework to be undertaken by such students who re-join the current Regulations.

COURSE STRUCTURE

SEMESTER I (R18PG)

Course Code	Core / Elective	Course Name	L	Т	Р	IM	EM	CR
1825101	Core	Advanced Mathematics	3	0	0	40	60	2
1899102	Core	Advanced Thermodynamics and Fluid Mechanics	3	0	0	40	60	3
1899103	Core	Introduction to Renewable Energy systems	3	0	0	40	60	3
1899104	Elective 1	Measurement and Control For Energy Systems	3	0	0	40	60	3
1899105		Solar Energy Technologies						
1899106		Power Generation, Distribution and Transmission						
1899107	Elective 2	Bio-Energy and Biofuels	3	0	0	40	60	3
1899108		Advanced Power Plant Engineering						
1899109		Solar Refrigeration and Air Conditioning						
1899110	Core	Research Methodology & IPR	2	0	0	40	60	2
1899111	Core	Seminar/Industrial Visit	0	0	4	40	60	2
One of the Audit Courses 1870A05	Audit Course	 English for Research paper writing Disaster Management Sanskrit for Technical Knowledge Value Education Constitution of India Pedagogy Studies Stress Management by Yoga Personality Development through Life Enlightenment skills 	2	0	0	40		0
		Total	17	0	20	340	400	18

SEMESTER II

Course code	Core / Elective	Course Name	L	Т	Р	IM	EM	CR
1899201	Core	Energy Audit and Management	3	0	0	40	60	3
1899202	Core	Computational Fluid Dynamics	3	0	0	40	60	3
1899203	Elective 3	Hydrogen and Fuel Cell Technologies	3	0	0	40	60	3
1899204		Wind Energy Technology						
1899205		Process Modeling and Simulation in Renewable Energy Systems						
1899206	Elective 4	Energy Storage Technology	3	0	0	40	60	3
1899207		Energy Conservation by Waste Heat Recovery						
1899208		Developing Energy Efficiency and Renewable Energy Projects						
1899209	Core	Mini-project	0	0	20	100	50	3
1899210	Core	Energy Laboratory	0	0	4	50	50	3
One of the audit courses 1870A01	Audit	 English for Research paper writing Disaster Management Sanskrit for Technical Knowledge Value Education Constitution of India Pedagogy Studies Stress Management by Yoga Personality Development through Life Enlightenment skills. 						
		Total	12	0	24	360	340	18

Course code	Core / Elective	Course Name	L	Т	Р	IM	EM	CR
1899301	Elective 5	Fuels and Combustion Technology	3	0	0	40	60	3
1899302		Environmental Engineering and Pollution Control						
1899303		Economics and Financing of Renewable Energy Systems						
1899304	Open Elective	Renewable Energy Grid Integration	3	0	0	40	60	3
1899305		Electric Vehicle Technology						
1899306		Power Electronic for Renewable Energy Systems						
1899307		Advanced IC Engines						
1899308		Biomass Characterization and Management						
1899309	Core	Dissertation Phase-I	0	0	20	100		10
		Total	6	0	20	180	120	16

SEMESTER III

SEMESTER IV

Course code	Core / Elective	Course Name	L	Т	Р	IM	EM	CR
1899401	Major Project	Dissertation Phase-II	0	0	32	50	50	16
		Total	0	0	32	50	50	16

M.TECH.-I- SEMESTER SYLLABUS

Course	Title	ADVANCED MATHEMA				ATICS	M.Tech RE I Sem				
Course	Code	Category	Hours/Week			Credits	Maximum Marks				
18991	101	BS	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		2	40	60	100		
Mid Exa	m Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
• T to p	 Course Objectives: To equip the students with standard concepts and tools at an advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications. 										
CO 1	Unders method	stand the basi	ic knowl	edge o	on a g	iven system	of linear equation	ns by using	various		
CO 2	Deduct	t various qua	drature f	formula	ae.						
CO 3	Apply	least squares	method	to fit a	a curv	e.					
CO 4	Solve	the boundary	y value p	roblen	ns in p	artial differe	ential equations.				
CO 5	Solve of	one dimensio	nal heat	equati	on usi	ing Crank –I	Nicoleson method	and wave			
	equation	on by finite d	ifference	e metho	od.						

<u>UNIT I</u>

Numerical Solution of Linear System of Equations: Solving set of equations-calculation of inverse of a matrix using Croat's method. Iterative methods - Gauss- Seidel iteration method - Relaxation method.

Learning Outcomes:

At the end of this unit, the student will be able to

• Solve a given system of linear equations by using various methods like Gauss-Seidal method and Relaxation method.

<u>UNIT II</u>

Numerical Integration: Newton- Cote's quadrature formulae - Trapezoidal rule - Simpson's Rules - Romberg's method - Gaussian Quadrature formula.

Learning Outcomes:

At the end of this unit, the student will be able to

- Derive quadrature formulae for a function whose values are given at certain points by choosing Newton's interpolation formula for the function.
- Calculate the remainder terms in the quadrature formulae like Trapezoidal rule, Simpson's rule, Romberg's method and Gaussian quadrature.

UNIT III

Curve Fitting: Method of Least squares - Fitting a straight line- a second degree parabola- an exponential curve.

Learning Outcomes:

At the end of this unit, the student will be able to

• Approximate functions that fit with the given data by least squares technique through a first and second degree polynomials.

UNIT IV

Numerical Solution of Partial Differential Equations: Classification of partial differential equations of second order - Finite difference approximation to derivatives - Solution of Laplace equation using Guass - Seidel method.

Learning Outcomes:

At the end of this unit, the student will be able to

• Solve Laplace equations using Gauss - Seidel method.

<u>UNIT V</u>

Parabolic and Hyperbolic Partial Differential Equations:

Solution of one dimensional heat equation using Crank-Nicoleson method - Solution of wave equation by finite difference method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solve one dimensional heat equation using Crank –Nicoleson method.
- Solve wave equation by finite difference method.

Text Books:

- 1. Introductory Methods of Numerical Analysis, SS Sastry,5th edition PHI, 2013.
- 2. Numerical Methods, S Arumugam A.Thangapandi Issac, A Somasundaram SCITECH Publishers, Second edition Reprint 2013.

Reference Books:

1. Applied Numerical Analysis, Curtis F.Gerald, Partick .o. Wheatly, Addison-Wesley, 1989

2. Numerical methods for Engineers, Steven C.Chapra, Raymond P.Canale, Mc-Graw Hill company, 5th edition,2007.

3. Numerical methods in Engineering and Sciences, B.S Grewal, Khanna Publishers.

Course	Title	ADVANCED THERMODYNAMICS A FLUID MECHANICS				AND CS	M.Tech RE I Sem				
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks	5		
1899	102	CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	40	60	100		
Mid Exa	am Durat	tion: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course	Objective	es:									
•	hermodyr hermodyr After the viscous flu low and s	completion namics in 1 namics. completion uid flow, b hock expan	of the real gas of the oundary	syllab behav syllab layer	us stu vior, a us stu conce	idents able availability idents able epts and cha	to understanding analysis, statistic to familiarized a anges in properti	the applic al and irre	etion of versible leal and pressible		
Course	Outcome	s : On suce	essful c	omple	tion o	of this cours	e, the students w	vill be able	to		
CO 1	To deve availabil	lops the abi lity analysis	lity to us and the	se the t rmody	hermo namic	odynamics c relations.	oncepts for vario	us applicati	ons like		
CO 2	To analy	ses the real	l gas beh	avior a	and ch	emical ther	modynamics.				
CO 3	To achie thermod	eves an unde ynamics.	erstandir	ng of tl	he bas	ic concepts	of Statistical and	Irreversible)		
CO 4	To unde	rstands the	laws of	fluid fl	ow fo	r ideal and v	viscous fluids.				
CO 5	To repre aerodyna	esents the re amics perfo	al solid	shapes	by su	itable flow	patterns and to an	alyze the sa	ame for		

<u>UNIT I</u>

Availability Analysis and Thermodynamic Property Relations: Reversible work - availability - irreversibility and second – law efficiency for a closed system and steady – state control volume. Availability analysis of simple cycles. Thermodynamic potentials. Maxwell relations. Generalized relations for changes in entropy - internal energy and enthalpy - generalized relations for Cp and CV. Clausius Clayperon equation, Joule–Thomson coefficient. Bridgeman tables for thermodynamic relations.

<u>UNIT II</u>

Chemical Thermodynamics and Equilibrium

Thermochemistry - First law analysis of reacting systems - Adiabatic flame temperature - entropy change of reacting systems - Second law analysis of reacting systems - Criterion for reaction equilibrium. Equilibrium constant for gaseous mixtures - evaluation of equilibrium composition.

<u>UNIT III</u>

Basic Equations of Fluid Flow and Potential Flow Theory

Three dimensional continuity equation - differential and integral forms – equations of motion momentum and energy and their engineering applications. Rotational and irrorational flows - circulation – vorticity - stream and potential functions for standard flows and combined flows – representation of solid bodies by flow patterns. Pressure distribution over stationery and rotating cylinders in a uniform flow

<u>UNIT IV</u>

Viscous Flow Theory

Laminar and turbulent flow - laminar flow between parallel plates - Poiseuille's equation for flow through circular pipes. Turbulent flow - Darcy Weisbach equation for flow through circular pipe - friction factor - smooth and rough pipes - Moody diagram – losses during flow through pipes.

<u>UNIT V</u>

Compressible Fluid Flow

One dimensional compressible fluid flow – flow through variable area passage – nozzles and diffusers – fundamentals of supersonics – normal and oblique shock waves and calculation of flow and fluid properties over solid bodies (like flat plate, wedge, diamond) using gas tables.

Text and Reference Books:

1. Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Cons, 1988.

2. Munson B.R., Young D.F. and Okiisi, T.H., Fundamentals of Fluid Mechanics, John Wiley and Sons Inc., New York, 1990.

3. Boundary Layer Theory, H Schlichting, Ninth Edition, Springer

- 4. Viscous Fluid Flow, F M White, Third EditionTata McGraw Hill
- 5. Anderson J.D., Fundamentals of Aerodynamics, McGraw Hill, Boston, 2001.

Thermodynamics – An Engineering Approach, Cengel, Tata McGraw Hill

Course	Title	INTRODUCTION TO RENEWABLE ENERGY SYSTEM				O YSTEMS	M.Tech RE I Sem				
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks				
1899	103	CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course	Objecti	ves:									
•	To pr	ovide knowle	edge of s	olar en	ergy	concept and	applications.				
•	To in	npart knowled	lge of ge	othern	nal, o	cean and tida	al energy and thei	ir applicatio	ons.		
•	To un	derstand the	design o	f wind	mills	and applica	tions.				
•	To un	derstand the	turbines	and ge	enerat	ors for small	l scale hydroelect	ric generati	ion.		
•	To un	derstand the	importa	nt parts	s of a	biogas plant	, design and princ	ciple of bio-	-diesel.		
Course	Outcon	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to		
CO 1	To exp devices	lain the basic	principl	es of v	variou	s renewable	energy conversion	n processes	and		
CO 2	To ider	tify various p	arameters	s that ir	fluend	ces the perfor	mance of renewab	ole energy			
	devices	/processes				I. I.					
CO 3	To und	ertake the field	1 projects	in the	area o	f solar therma	al, solar PV, wind,	biomass, oc	ean		
	energy,	geothermal et	c								
CO 4	To ider	ntify suitable r	enewable	source	e and t	echnology fo	or a given requirem	nent To deve	elopthe		
	integrat	ted renewable	energy te	chnolo	gy for	decentralized	l power sector				

<u>UNIT-I</u>

Need of sources of renewable energy: Introduction to different sources of renewable energy, e.g., Solar Energy, Wind Energy, Bio-mass, Geothermal Energy, Ocean energy, Solar Energy and Applications.

Basic concepts of radiations: Solar radiation, Direct and Indirect radiation, Radiation measuringinstrument, applications etc.

<u>UNIT-II</u>

Solar Energy: Basics of solar thermal applications both low and high temperature ranges such as water heating, air heating, steam generation, desalination of water, crop drying and power generation, Principle of photovoltaic including introduction to various components of a photovoltaic systems for standalone/hybrid/grid connected systems

Wind Energy: Wind Resource assessment including instrumentation used in resource assessment, basic theory of wind, wind power generators both for decentralized applications and grid connected systems, performance characteristics, Augmentation of wind power, Betz criteria

<u>UNIT-III</u>

Bioenergy: Types and availability of biomass resources, various methods of biomass utilization for energy generation: gasification, briquette, palatization, syngas, Anaerobic/Aerobic digestion, ethanol and biodiesel production, types of Bio-gas digesters, Combustion characteristics of bio- gas and its different utilizations,

Geothermal Energy: availability and methods of utilization of geothermal resource for thermal applications and electricity generation

UNIT-IV

Hydro Energy: Basic principle of hydroelectric power generation, classification of hydropower projects (pico, micro, mini, small hydro sand large hydro projects), types of hydro turbine, various components of hydropower projects.

Ocean Energy: Principles utilization, thermodynamic cycles, tidal and wave energy, potential and conversion technique, Principle of ocean thermal energy conversion system.

<u>UNIT-</u>V

Fuel Cells and Hydrogen Energy: Introduction, principle of fuel cells, thermodynamic analysis of fuel cells, types of fuel cells, fuel cell batteries, applications of fuel cells. Hydrogen as a renewable energy source, sources of hydrogen, fuel for vehicles, hydrogen production- direct electrolysis of water, thermal decomposition of water, biological and biochemical methods of hydrogen production.

Suggested texts and reference materials

- 1. Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes, fourthedition, Wiley.
- 2. Tiwari, G. N., & Ghosal, M. K. (2007). Fundamentals of renewable energy sources. AlphaScience International Limited.
- 3. Mukherjee, D., & Chakrabarti, S. (2004). Fundamentals of renewable energy systems. NewAge International.
- 4. Sukhatme, S. P. (2005). Solar Energy Principles of Thermal Collection and storage. TataMcGraw Hill Publishing Company Ltd. New Delhi.
- 5. Kothari, D. P., Singal, K. C., & Ranjan, R. (2011). Renewable energy sources and emerging technologies. PHI Learning Pvt. Ltd.

Course '	Fitle	MEASUR FOR	EMEN ENER	T AN GY S	D CO YSTI	ONTROL EMS	M.Tech RE I Sem										
Course (Code	Category Hours/Week			Credits	Maximum Marks											
1899104		Elective-I	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total								
			3	0		3	40	60	100								
Mid Exa	m Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs								
Course C)bjecti	ves:															
• St	udents	will be fami	liar with	variou	is mea	asurement te	chniques useful f	or the evalu	ation of								
Energy Conservation Schemes.																	
• Co	ontrol	aspects also	will be	made c	elear t	to them as fa	ar as Energy Con	nservation S	Schemes								
ar	e conc	erned.															
• In	• In short, students will become knowledgeable on the design of measurement and control																
sy	stems	for thermal /	electrica	l energ	gy sys	tems.	-										
Course Outcomes : On successful completion of this course, the students will be able to																	
CO 1	To und	lerstands the	principle	e and u	se of	sensors for 1	measurement of c	lifferent the	ermal								
	and electrical parameters.																
CO 2	To understand the concept of control systems, modes, design and their applications																
CO 3	To und	lerstand the C	Control C	Compo	nents	and Control	ler										
CO 4	To und	lerstand the I	Designin	g of M	easur	ement and C	Control Systems.		To understand the Designing of Measurement and Control Systems.								

<u>UNIT I</u>

Measurement Characteristics: Introduction to measurements, Errors in measurements, Statistical analysis of data, Regression analysis, Correlation, Estimation of uncertainty and Presentation of data, Design of experiments– Experimental design factors and protocols.

<u>UNIT II</u>

Measurements in Energy Systems: Basic Electrical measurements, Transducers and its types, Signal conditioning and processing - Measurement of temperature, pressure, velocity, flow rate, thermo-physical and transport properties of solids liquids and gases, Radiation properties of surfaces, Vibration and noise - Computer assisted data acquisition, Data manipulation and data presentation.

<u>UNIT III</u>

Control Systems: Introduction, Open and closed loop control systems, Transfer function. Types of feedback and feedback control system characteristics – Effect of disturbances – Dynamic characteristics.

<u>UNIT IV</u>

Control Components and Controller: Process characteristics, Control system parameters – DC and AC servomotors, servo amplifier, potentiometer, synchro transmitters, synchro receivers, synchro control transformer, stepper motors - continuous, discontinuous and composite control modes – Analog and Digital controllers.

<u>UNIT V</u>

Designing of Measurement And Control Systems: Designing of temperature, pressure, flow and liquid level measurement and control system – Performance – Steady state accuracy – Transient response – Frequency response – Fault finding – Computer based controls.

Suggested texts and reference materials

- 1. Alan S Morris and Reza Langari, "Measurements and Instrumentation Theory and Application", Elsevier Inc, 2012.
- 2. Venkateshan. S. P, "Mechanical Measurements", Ane Books Pvt Ltd, 2010
- 3. Holman J.P., "Experimental methods for Engineers", McGraw Hill, 2008.
- 4. Bolten. W, "Industrial Control and Instrumentation", University Press, 2004.
- 5. Curtis D Johnson, 'Process Control Instrumentation Technology'', PHI Learning Private Limited, 2011.
- 6. Doblin E.O, 'Measurement System Application and Design', Second Edition, McGraw Hill, 1978.
- 7. Nakra, B.C., Choudhry K.K., "Instrumentation, Measurements and Analysis", Tata McGraw Hill, New Delhi, 2nd Edition 2003.

Course	Title	SOLAR ENERGY TECHNO				OLOGY	M.Tech RE I Sem				
Course	Code	Category	Category Hours/Week			Credits	Maximum Marks				
1899	105	Elective-I	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs			End Exam Duration: 3Hours					
Course	Course Objectives:										
• 7	• To learn and study the radiation principles with respective solar energy estimation										
• 1	o unde	rstand PV tee	chnology	princ	iples	and techniqu	ues of various so	lar cells / n	naterials		
f	or energ	gy conversion			•	-					
• 7	o learn	economic an	d enviro	nment	al mei	rits of solar e	energy for variety	application	ns.		
Course	Outcon	nes : On suco	essful c	omple	tion o	of this cours	e, the students w	vill be able	to		
CO 1	Sugge	st and design	solar the	ermal t	based	applications	•				
CO 2	CO 2 Designing of solar photovoltaic based power systems for both domestic and industrial applications.										
CO 3	Apply the concept of utilization of solar energy for the said application in an economical way.										
CO 4	To unc	lerstand the S	olar Pas	sive A	rchite	cture.					

<u>UNIT I</u>

Solar Radiation and Collectors: Solar angles – Sun path diagrams – Radiation - extra-terrestrial characteristics - measurement and estimation on horizontal and tilted surfaces - flat plate collector thermal analysis - testing methods-evacuated tubular collectors - concentrator collectors – classification - design and performance parameters - tracking systems - compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats – performance of the collectors.

<u>UNIT II</u>

Solar Thermal Technologies: Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker : domestic, community -Solar pond - Solar drying.

<u>UNIT III</u>

Solar PV Fundamentals: Semiconductor – properties - energy levels - basic equations of semiconductor devices physics. Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - figure of merits of solar cell - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells – Solar thermo-photovoltaic.

<u>UNIT IV</u>

Spv System Design and Applications: Solar cell array system analysis and performance prediction-Shadow analysis: reliability - solar cell array design concepts - PV system design - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking centralized and decentralized SPV systems - standalone - hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems.

<u>UNIT V</u>

Solar Passive Architecture: Thermal comfort - bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - Radiative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy efficient landscape design - thermal comfort.

Suggested texts and reference materials

- 1. Goswami D.Y., Kreider, J. F. and Francis., "Principles of Solar Engineering', Taylor and Francis, 2000.
- 2. Chetan Singh Solanki, "Solar Photovoltatics Fundamental Technologies and Applications", PHI Learning Private limited, 2011.
- 3. Sukhatme S.P.,. Nayak.J.P, 'Solar Energy Principle of Thermal Storage and collection', Tata McGraw Hill, 2008.
- 4. Solar Energy International, "Photovoltaic Design and Installation Manual" New Society Publishers, 2006.
- 5. Roger Messenger and Jerry Vnetre, "Photovoltaic Systems Engineering", CRC Press, 2010.

		POV	VER GI	ENER	ATI							
Course	Title	D	ISTRI	BUTI	ON 8	M.Tech RE I Sem						
]	FRANS	MISS	ION							
Course	Code	Category	Hou	rs/Wee	ek	Credits	Maximum Marks					
							Continuous	End				
1900	106	Flective-I	\mathbf{L}	Т	Р	С	Internal	Enu	Total			
1099	100	Elective-1					Assessment	Lams				
			3	0		3	40	60	100			
Mid Exa	Vid Exam Duration: 2Hours							End Exam Duration: 3Hours				
Course	Objecti	ves:										
• 7	The sub	ject will enl	nance th	e und	erstan	ding of the	students on po	wer systen	n			
d	lynamic	stability, go	eneration	n cont	rol, A	AC and DC	transmission, a	ind reactive	e			
n	ower a	control distr	ibution	systen	ns al	ong with c	conventional and	intelligen	t			
r C	ontrole			5,500								
	1000000000000000000000000000000000000	0	0.1			e .1 •						
Course	Outcon	nes : On succ	cessful c	omple	tion o	of this cours	e, the students w	ill be able	to			
CO 1	To unc	derstand the o	n basic p	princip	les of	power Gene	eration, Distributi	on &				
	Transmission.											
CO 2	2 To understand techniques to optimize transmission losses.											
CO 3	To understand HVDC converters, advantages and economic considerations, converter											
	control characteristics.											
CO 4	To unc	lerstand Distr	ibution	system	is, cor	nductor size,	Kelvin's law, pe	rformance				
	calcula	ations and ana	alysis.	-								

<u>UNIT I</u>

Generation: Synchronous generator operation, Power angle characteristics and the infinite bus concept, dynamic analysis and modeling of synchronous machines, Excitations systems, Prime mover governing systems, Automatic generation control;

<u>UNIT II</u>

Auxiliaries: Power system stabilizer, artificial intelligent controls, Power quality;

<u>UNIT III</u>

AC Transmission: Overhead and cables, Transmission line equations, Regulation and transmission line losses, Reactive power compensation, Flexible AC transmission;

UNIT IV

HVDC transmission: HVDC converters, advantages and economic considerations, converter control characteristics, analysis of HVDC link performance, Multi-terminal DC system, HVDC and FACTS;

<u>UNIT V</u>

Distribution: Distribution systems, conductor size, Kelvin's law, performance calculations and analysis, Distribution inside and commercial buildings entrance terminology, Substation and feeder circuit design considerations, distribution automation, Futuristic power generation.

Suggested texts and reference materials

- 1. Kim, C. K., Sood, V. K., Jang, G. S., Lim, S. J., & Lee, S. J. (2009). HVDC transmission:power conversion applications in power systems. John Wiley & Sons.
- 2. Gonen, T. (2011). Electrical power transmission system engineering: Analysis and design.CRC press.
- 3. Wood, A. J., Wollenberg, B. F., & Sheblé, G. B. (2013). Power generation, operation, and control. John Wiley & Sons.
- 4. Anderson, P. M., & Fouad, A. A. (2008). Power system control and stability. John Wiley& Sons.
- 5. Kundur, P., Balu, N. J., & Lauby, M. G. (1994). Power system stability and control (Vol.7). New York: McGraw-hill.

Course	Title	BIO-ENERGY AND BIOFUELS					M.Tech RE I Sem			
Course	Code	Category	ategory Hours/Week Credit			Credits	Maximum Marks			
18991	107	Elective- 2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0		3	40	60	100	
Mid Exa	ım Dur	ation: 2Hou	rs				End Exam Dura	End Exam Duration: 3Hours		
Course	Course Objectives:									
• T	This cou	rse is aimed	at diss	eminat	ion o	f important	information of b	bioenergy to	О	
e	nable st	udents to acc	juire kno	wledg	e on	cutting-edge	e technologies for	conversion	n	
0	f variou	is biomass fe	edstock	to bioe	energy	/ biofuel pr	oduction and the	ir utilizatio	n	
iı	n combi	ustion engine	es / devi	ces an	d fue	l cells. On	successful compl	etion of the	e	
с	ourse. t	he students v	vould be	able t	o con	tribute towa	rds providing bio	omass based	d	
S	ustainat	ole energy so	lutions.				1 0			
Course	Outcon	nes : On suco	cessful c	omple	tion o	f this cours	e. the students w	vill be able	to	
CO 1	To cha	racterize diff	erent bio	mass	feedst	ock's based	on its constituent	s and prope	erties.	
CO 2	To un	derstand and	evaluat	e vario	ous bi	omass pretr	eatment and prod	cessing tecl	nniques	
	interms of their applicability for different biomass type for biomass conversion									
	processes.									
CO 3	To unc	lerstand the r	process o	f com	oustio	n. pyrolysis.	gasification and	liquefaction	n for	
	produc	tion of value	added b	io-pro	ducts.	biogas, bio	-CNG generation	etc.		
CO 4	To und various	lerstand basic senergy utilit	cs of bio y routes.	fuels, t	their p	production te	echnologies and a	pplications	in	

<u>UNIT I</u>

Biomass resource assessment: Introduction, Classification and properties of biomass, Biomasscharacterization, different energy conversion methods, Bio Energy Resources, World Bio Energy Potential, India's Bio Energy Potential, Biomass Resources and classification, Physio-chemical characteristics. Biomass Combustion, Loose biomass densification, Biomass based power generation and utilization for domestic cooking, improved biomass cook stoves.

<u>UNIT II</u>

Biogas Systems: Technology of Biogas production, Biogas Plants, Digester types, Digester design, Chemical kinetics and mathematical modeling of bio methanation process, Dung, Vegetable Waste and Municipal Waste based Biogas plants, Biogas as fuel for transportation, Lighting, Running Dual Fuel Engines, Electricity generation, Biogas Bottling Plant Technology, Application of Biogas slurry in agriculture, Design of Biogas for cold climates. Case studies and numerical.

<u>UNIT III</u>

Biomass Gasifiers: History, Principle, Design of Bio mass Gasifiers, updraft gasifier, down draft gasifier, zero carbon biomass gasification plants, Gasification of plastic-rich waste, applications for cooking, electricity generation, Gasifier Engines, Operation of spark ignition and compression ignition engine with wood gas, methanol, ethanol and biogas, Biomass integrated gasification/combined cycles systems, gasification, pyrolysis,

liquification, biomass pre- treatment and processing, Case studies, biodiesel, improved biomass cookstove, bio-hydrogen generation, electricity generation from biomass gasifier, engine systems, bio-gasoline, bio-diesel and duel fuel engine, case studies.

<u>UNIT IV</u>

Biofuel: Bioethanol production from lignocelluloses, waste material, including crop residue, sugar and starch; biodiesel production from vegetable oil and animal fat, algae; biofuel derived from; economics of biofuel production; environmental impacts of biofuels; biofuel blends; green diesel from vegetable oil; biodiesel production process, by-product utilization. Production of butanol and propanol; Production of bio-hydrogen; production of hydrogen by fermentative bacteria.

<u>UNIT V</u>

Bio-refinery concept: Bio-refinery concept: definition; different types of bio-refinery; challenge and opportunities; Fuel and chemical production from saccharides, lingo cellulosic biomass, protein; vegetable oil; algal bio-refinery.

Suggested texts and reference materials

- 1. Mutha, V. K. (2010). Handbook of bioenergy and biofuel SBS Publishers, Delhi
- Clark, J. H., & Deswarte, F. (Eds.). (2014). Introduction to chemicals from biomass. JohnWiley & Sons.
- 3. Klass, D. L. (1998). Biomass for renewable energy, fuels, and chemicals. Elsevier.
- 4. Mukunda, H. S. (2011). Understanding clean energy and fuels from biomass. Wiley India.
- 5. Higman C. and Burgt M v d (2003); Gasification, Elsevier Science
- 6. Speight, J. (2008). Synthetic fuels handbook: properties, process and performance. McGraw-Hill
- 7. Dahiya, A. (Ed.). (2014). Bioenergy: Biomass to biofuels. Academic Press.
- 8. Hall, D. O., & Overend, R. P. (1987). Biomass: regenerable energy.
- 9. San Pietro, A. (Ed.). (2012). Biochemical and photosynthetic aspects of energy production. Elsevier. New York

Course Title		ADVAN	NCED I ENGIN	POWI IEER	ER P ING	M.Tech RE I Sem				
Course	Code	le Category Hours/Week Cred				Credits	Maximum Marks			
1899108		Elective- 2	L	Т	Р	С	Continuous Internal Assessment		Total	
			3	0		3	40	60	100	
Mid Exam Duration: 2HoursEnd Exam Duration: 3Hours							urs			
Course Objectives:										
• To make the students to understand the energy scenario and the environmental issues related to the power plants.										
• 1	To create	e awareness t	o the stu	idents	on the	e various uti	lities in the powe	er plants and	d	
t	he aven	ues for optim	izing the	em.						
Course	Outcon	nes : On succ	essful c	omple	tion o	of this cours	e, the students w	vill be able	to	
CO 1	Unders	standing the c	concept of	of varie	ous po	ower plant cy	ycles			
CO 2	Possible mitigation of anthropogenic emissions by optimizing the power plant									
	cycles/utilities									
CO 3	To und	lerstand the I	Diesel an	d Gas	Turbi	ne Power Pl	ants			
CO 4	To unc	lerstand the H	Iydroele	ctric 8	z Nuc	lear Power F	Plants			

<u>UNIT I</u>

Introduction: Overview of Indian power sector – load curves for various applications – types of power plants – merits and demerits – criteria for comparison and selection - Economics of power plants.

<u>UNIT II</u>

Steam Power Plants: Basics of typical power plant utilities - Boilers, Nozzles, Turbines, Condensers, Cooling Towers, Water Treatment and Piping system - Rankine Cycle – thermodynamic analysis. Cycle improvements – Superheat, Reheat, Regeneration

<u>UNIT III</u>

Diesel and Gas Turbine Power Plants: I.C Engine Cycles - Otto, Diesel & Dual –Theoretical vis-àvis actual – Typical diesel power plant – Types – Components - Layout - Performance analysis and improvement - Combustion in CI engines- E.C cycles – Gas turbine & Sterling - Gas turbine cycles – thermodynamic analysis – cycle improvements - Intercoolers, Re heaters, regenerators.

<u>UNIT IV</u>

Advanced Power Cycles: Cogeneration systems – topping & bottoming cycles - Performance indices of cogeneration systems– Heat to power ratio - Thermodynamic performance of steam turbine cogeneration systems – gas turbine cogeneration systems – reciprocating IC engines cogeneration systems- Binary Cycle - Combined cycle – IGCC – AFBC / PFBC cycles – Thermionic steam power plant. MHD – Open cycle and closed cycle- Hybrid MHD & steam power plants

<u>UNIT V</u>

Hydroelectric & Nuclear Power Plants

Hydroelectric Power plants – classifications - essential elements – pumped storage systems – micro and mini hydel power plants. General aspects of Nuclear Engineering – Components of nuclear power plants - Nuclear reactors & types – PWR, BWR, CANDU, Gas Cooled, Liquid Metal Cooled and Breeder reactor - nuclear safety – Environmental issues.

Suggested texts and reference materials

- 1. Arora and Domkundwar, A course in power Plant Engineering, Dhanpat Rai and CO, 2004.
- 2. Gill A.B., Power Plant Performance, Butterworths, 1984.
- 3. Haywood R.W., Analysis of Engineering Cycles, 4th Edition, Pergamon Press, Oxford, 1991.
- 4. Horlock J.H., Cogeneration Heat and Power, Thermodynamics and Economics, Oxford, 1987.
- 5. Lamarsh J.R., Introduction to Nuclear Engineering 2nd edition, Addison-Wesley, 1983.
- 6. Nag P.K., Power Plant Engineering, Tata Mcgraw Hill Publishing Co Ltd, New Delhi, 1998.
- 7. Wood A.J., Wollenberg B.F., Power Generation, operation and control, John Wiley, New York, 1984.

Course	Title	SOLAR AII	REFRI R CON	GER. DITI(ATIC DNIN	ON AND IG	M.Tech RE I Sem				
Course	Code	Category	Hours/Week Credits Maximum Marks								
1899	109	Elective- 2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs			End Exam Duration: 3Hours					
Course	Course Objectives:										
•	• To provide understanding of fundamental concepts of solar operated refrigeration										
	and airconditions.										
•	To pro	vide fundam	ental kn	owledg	ge de	siccant mate	erial and desicca	int air			
	conditio	oningsystems	•								
•	To pro refriger	vide underst ationsystem.	anding (of fund	damei	ntal concept	s the solar adsor	rption			
•	To und	erstand the d	esign of	solar p	oower	ed absorptio	on refrigeration sy	ystem and			
	itsappli	cations.	U			1	0	, ,			
Course	Outcom	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to		
CO 1	To get	the knowledg	ge of sol	ar vapo	or con	pression an	d vapor absorptio	on system			
CO 2	To get	the knowled	ge of des	sign of	adsor	ption refrige	eration and absor	ption refrige	eration		
	system.										
CO 3	To understand the Introduction, principle of adsorption, thermodynamics of adsorption cycles.										
CO 4	To und for sola	lerstand the ' ar refrigeration	Types of on and ai	solar o r-cond	coolir litioni	ng systems, s ng	solar collectors ar	nd storage s	ystems		

<u>UNIT I</u>

Introduction: Basics of refrigeration and air conditioning, comfort zones, potential and scope of solar cooling and heating, fundamentals of conventional vapour compression system and vapour absorption system. Solar cooling technology: solar electrical cooling, solar thermal cooling:- open cycles (liquid and solid desiccant system), closed cycle (absorption cycle, adsorption cycle, solar radiation cooling), thermo mechanical systems, steam ejector cycle, solar combined power/cooling.

<u>UNIT II</u>

Desiccant Air Conditioning: Desiccant materials, classification of desiccant material, fundamentals of desiccant material: adsorption process, regeneration process, adsorption rate, regeneration rate, factor affecting adsorption and regeneration of desiccant material, heating/humidification, cooling/dehumidification, desiccant dehumidifiers: desiccant bed, desiccant wheel, desiccant coated heat exchanger, solar powered desiccant air conditioning system.
<u>UNIT III</u>

Adsorption Refrigeration System: Introduction, principle of adsorption, thermodynamics of adsorption cycles: - basic adsorption cycle, heat recovery adsorption refrigeration cycle, mass recovery adsorption refrigeration cycle, thermal wave cycle, convective thermal wave cycle, intermittent adsorption systems: silica-gel/water and silica-gel methanol systems, zeolite– water systems, activated carbon–methanol systems, activated carbon–ammonia systems.

<u>UNIT IV</u>

Absorption Refrigeration System: Absorption cycle of operation, maximum, COP, properties of solution, aqua-ammonia solution, simple absorption system, h-x diagram, ammonia enrichment process and water -lithium bromide refrigeration system, single-effect solar absorption cycle, half-effect solar absorption cooling system, double-effect solar-assisted absorption cooling systems, diffusion absorption solar cooling system, hybrid solar absorption cooling systems.

<u>UNIT V</u>

Potential and scope of solar cooling: Types of solar cooling systems, solar collectors and storage systems for solar refrigeration and airconditioning, Solar operation of vapour absorption and compression refrigeration cycles and their assessment, Solar dessicant cooling system. Open cycle absorption/desorption solar cooling alternatives, advanced solar cooling systems, refrigerant storage for solar absorption cooling systems, solar thermoelectric refrigeration and airconditioning. Economics of solar cooling

- 1. Mugnier, D., Neyer, D., & White, S. D. (Eds.). (2017). The solar cooling design guide:case studies of successful solar air conditioning design. John Wiley & Sons.
- 2. McVeigh, J. C., & Sayigh, A. A. M. (Eds.). (2012). Solar air conditioning and refrigeration. Newnes. Pergamon.
- 3. Prasad, M. (2011). Refrigeration and air conditioning. New Age International.
- 4. Wang, R., & Ge, T. (Eds.). (2016). Advances in solar heating and cooling. WoodheadPublishing.
- 5. Garg, H. P. (1987). Solar Refrigeration and Air-Conditioning. In Advances in Solar EnergyTechnology (pp. 342-442). Springer, Dordrecht.
- Althouse, A. D., Turnquist, C. H., Bracciano, A. F., Bracciano, D. C., & Bracciano, G. M.(2004). Modern refrigeration and air conditioning. Goodheart-Willcox.

Course T	itle	RESEAR	CH M	ETHC IPR	DOI	LOGY &	M.Tecl	h RE I Sei	m		
Course C	ode	Category	Hou	rs/We	ek	Credits	Maxim	um Marks	5		
189911	0	CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2	0		2	40	60	100		
Mid Exan	Dui	ration: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course O	ojecti	ives:				•					
• To	fami	liarize with n	rize with modeling, referencing, literature survey, etc.								
• To	desig	in experiments and to analyze results of the experiments.									
• To	prepa	are technical	reports a	nd rese	earch	papers.					
• To	prepa	are material f	or techni	cal pre	esenta	tion and do	oral presentation.				
• To	unde	rstand the pu	rpose an	d terms	s of IF	PR.	-				
• To	orien	t to ethics in	research	and pu	ublica	tion.					
Course O	itcon	nes : On suc	cessful c	omple	tion o	of this cours	e, the students v	vill be able	to		
CO 1 U	Inder	stand researc	h proble	m forn	nulatio	on.	/				
CO 2 U	Inder	stand that too	lay's wo	rld is c	ontro	lled by Com	puter, Informatio	n Technolo	gy, but		
t	omor	row world wi	ill be rule	ed by i	deas, d	concept, and	creativity.				
CO 3 U	Inder	standing that	when IP	R wou	ıld tak	e such impo	rtant place in gro	wth of indi	viduals		
8	z nati	on, it is need	less to ei	nphasi	s the r	need of info	rmation about Int	ellectual Pr	operty		
F	ight	to be promot	ed amon	g stude	ents in	general & e	engineering in par	rticular.	-		
CO 4 U	Inder	stand that IP	R protect	tion pro	ovides	an incentiv	e to inventors for	further res	earch		
V	ork a	and investme	nt in R &	αD.							

<u>UNIT I</u>

Meaning of Research, Types of Research, Research Process, Problem definition, Objectives of Research, Research Questions, Research design, Approaches to Research, Quantitative vs. Qualitative Approach, Understanding Theory, Building and Validating Theoretical Models, Exploratory vs. Confirmatory Research, Experimental vs Theoretical Research, Importance of reasoning in research.

<u>UNIT II</u>

Problem Formulation, Understanding Modeling& Simulation, Conducting Literature Review, Referencing, Information Sources, Information Retrieval, Role of libraries in Information Retrieval, Tools for identifying literatures, Indexing and abstracting services, Citation indexes.

UNIT III

Experimental Research: Cause effect relationship, Development of Hypothesis, Measurement Systems Analysis, Error Propagation, Validity of experiments, Statistical Design of Experiments, Field Experiments, Data/Variable Types & Classification, Data collection, Numerical and Graphical Data Analysis: Sampling, Observation, Surveys, Inferential Statistics, and Interpretation of Results.

<u>UNIT IV</u>

Preparation of Dissertation and Research Papers, Tables and illustrations, Guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript. References, Citation and listing system of documents.

<u>UNIT V</u>

Intellectual property rights (IPR) - patents-copyrights-Trademarks-Industrial design geographical indication. Ethics of Research- Scientific Misconduct- Forms of Scientific Misconduct. Plagiarism, Unscientific practices in thesis work, Ethics in science

- 1. Borden, K. S. and Abbott, B. B., "Research Design and Methods A Process Approach",
- 2. 8thEdition, McGraw-Hill, 2011
- 3. C. R. Kothari, "Research Methodology Methods and Techniques", 2nd Edition, New Age
- 4. International Publishers
- 5. Davis, M., Davis K., and Dunagan M., "Scientific Papers and Presentations", 3rdEdition,
- 6. Elsevier Inc.
- 7. Michael P. Marder," Research Methods for Science", Cambridge University Press, 2011
- 8. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
- 9. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age". Aspen Law & Business; 6th Edition July 2012

Course	Title	SEMINA	R/ INI	DUST	RIAI	L VISIT	M.Tech	RE I Sei	m	
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
1899	111	CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			0	0	4	2	40	60	100	
Mid Exa	am Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs	
Course	Objecti	ojectives:								
•										
Course	Outcon	nes : On succ	essful c	omple	tion o	of this cours	e, the students w	vill be able	to	
CO 1	Studen	ts will learn	o survey	y the re	elevan	t literature s	uch as books, nat	ional/interr	national	
	referee	d journals an	d contac	t resou	irce p	ersons for th	e selected topic o	of research.		
CO 2	Studen	ts will be abl	e to use	differe	nt exp	perimental te	echniques.			
CO 3	Studen	ts will be abl	e to use	differe	ent sof	ftware/ comp	outational/analytic	cal tools.		
CO 4	Studen	Students will be able to design and develop an experimental set up/ equipment/test rig.								
CO 5	Studen conclu	ts will be abl sions from th	e to con e results	duct te after a	sts on analyz	existing set	ups/equipment's	and draw l	ogical	

Course Contents

The Project Work will start in semester I and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

M.TECH.-II- SEMESTER SYLLABUS

Course	Title	ENERGY	AUDIT	& M	ANA(GEMENT	M.Tech	RE II Se	m		
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18992	01	CORE	L	Т	Р	С	Continuous Internal Assessment	nuous End rnal Exams Tota			
			3	0	0	3	40	60	100		
Mid Exa	m Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course (Objecti	ctives:									
• T	he cou	irse discusse	s about	the e	nergy	scenario, o	energy conservat	tion and it	s		
in	nportar	nce, energy s	trategy	for the	futur	e, energy c	onservation act-2	2001 and it	S		
fe	atures,	Kyoto proto	col and	global	warn	ning. The st	udents would lea	rn about th	e		
С	oncepts	s of energy ma	anageme	ent & a	udit.	C					
Course (Jutcon	nes : On suco	essful c	omple	tion o	f this cours	e. the students v	vill be able	to		
CO 1	Unders	stand the cur	rent ener	rgv sce	enario	along with	energymanageme	ent and strat	tegies.		
CO 2	Take a	iction on ener	gy conse	ervatio	n tech	niques.					
CO 3	Acquir	re the knowle	dge of fi	inancia	ıl man	agement.					
CO 4	Analyz	ze the data for	r energy	monit	oring	and targetin	g.				

<u>UNIT I</u>

Energy Scenario: Commercial and Non-Commercial Energy, Primary Energy Resources, Commercial Energy Production, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy and Environment: Air Pollution, Climate Change, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features, Kyoto Protocol, Global warming.

<u>UNIT II</u>

Energy Conservation: Introduction, Energy and heat balances, Methods for preparing process flow chart, material and energy balance in different processes, Sankey diagram, Energy conservation in boilers, Energy conservation in steam systems, Heat exchanger networking, concept of pinch, lighting systems energy efficiency study, Energy conservation opportunities; conservation in buildings, opportunities in compressed air systems, Refrigeration plants etc.

Principles And Objectives of Energy Management: Introduction, Energy Planning, Energy Staffing, Energy Organization, Energy Requirement, Energy Costing, Energy Budgeting, EnergyMonitoring, Energy Consciousness Energy Conversions, Energy Efficient Equipment, Energy Management Professionals, Environment Pollution due to Energy Use, Evaluation of alternative Energy Sources.

<u>UNIT III</u>

Energy Management & Audit: Definition, Types of energy audit, Energy management (audit) approach-understanding energy costs, Ventilation Audit, Measuring and Detection Instruments for Energy Survey, Scope of Energy audit, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.

UNIT IV

Energy Action Planning: Key elements, Force field analysis, Energy policy purpose, perspective, Contents, Formulation, Ratification, Design of Energy Management Programmes, Saving Energy and Implementation of Energy Conservation, location of energy management, Top management support, Managerial function, Roles and responsibilities of energy manager, Accountability. Motivating-motivation of employees: Information system designing barriers, Strategies; Marketing and communicating-training and planning.

Financial Management: Investment-need, Appraisal and criteria, Financial analysis techniques, Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis; Financing options, Energy performance contracts and role of ESCOs.

<u>UNIT V</u>

Project Management: Definition and scope of project, Technical design, Financing, Contracting, Implementation and performance monitoring. Implementation plan for top management, Planning Budget, Procurement Procedures, Construction, Measurement & Verification.

Energy Monitoring and Targeting: Defining monitoring & targeting, Elements of monitoring & targeting, Data and information-analysis, Techniques, energy consumption, Production, Cumulative sum of differences (CUSUM).

Text Books:

- 1. W.R Murphy & G. McKay, Energy management, Butterworth & Co ers
- 2. Sonal Desai, Hand Book of Energy Audit, McGraw Hill Education (India) PrivateLimited,2018
- 3. Kumar, Anil, Om Prakash, Prashant Singh Chauhan, and Samsher Gautam. Energy Management: Conservation and Audits. CRC Press, 2020

Reference Books:

- 1. Loftness, Robert L. "Energy Handbook." 2d ed. New York: Van Nostrand Reinhold Co.,
- 2. Turner, W. C., & Doty, S. (2013). Energy management handbook (Vol. 2). Lulu Press, Inc.
- 3. Kenney, W. F. Energy conservation in the process industries. Academic Press, 2012.
- 4. Kreith, F., & Goswami, D. Y. (Eds.). (2007). Energy Management and Conservation Handbook. CRC Press.

Course 7	ſitle	СОМ	IPUTAT DYN	FIONA AMIC	AL FL CS	JUID	M.Tech	RE II Se	m	
Course (Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
18992(02	CORE	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTot4060100			
			3	0	0	3	40	60	100	
Mid Exar	n Dura	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs	
Course O	bjecti	ves:								
• Stu	udent v	will be able	to apply	the co	oncept	t of computa	ational fluid dyna	amics in the	e	
En	ergy s	ystems to pre	edict the	actual	perfo	rmance.				
Course O	utcom	es : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to	
CO 1	Го und	erstands the	method	of mod	leling	the flow and	d heat transfer ph	enomenon.		
CO 2	Го dev	elops finite c	lifferenc	e and f	finite	volume disci	retized forms of t	he CFD equ	uations.	
CO 3	To und	erstand the various numerical schemes to solve convection and diffusion								
6	equatic	ons.								
CO 4	To und	erstand the T	Turbulen	ce Mo	dels					

<u>UNIT I</u>

Introduction: Numerical simulation – Advantages, Methods of classification of PDE's, Elliptic, parabolic and hyperbolic equations, Initial and boundary conditions, Discretization Methods, Finite Difference Expressions from Taylor's series, Uniform and non-uniform Grids - Numerical Errors, Grid Independence Test.

<u>UNIT II</u>

Conservation Equation: Mass, Momentum and Energy Equation three dimensions, Eulerian and Lagrangian Approach, Equation of State, Navier's Strokes equation, Differential and Integral form of general transport equations.

<u>UNIT III</u>

Conduction Heat Transfer: Steady one-dimensional conduction, Two and three dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems - Finite difference and Finite Volume approach.

UNIT IV

Incompressible Fluid Flow: Stream Function – Vortices methods, Finite volume methods for Convection and diffusion problem – Central difference scheme, Upwind scheme, Hybrid scheme – Assessment of each scheme - Solution algorithm for pressure – velocity – coupling in steady flows - SIMPLE Procedure of Patankar and Spalding, SIMPLER and PISO Algorithm.

<u>UNIT V</u>

Turbulence Models: Algebraic Models – One equation model, $K - \varepsilon$ Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.

- 1. Anderson D.A., Tannehill J.I. and Pletcher R.H., "Computational fluid Mechanics and HeatTransfer, "Hemisphere Publishing Corporation, New York, USA, 1984.
- 2. Bose T.X., "Numerical Fluid Dynamics", Narosa Publishing House, 1997.
- 3. Fletcher C.A.J. "Computational Techniques for fluid Dynamics 2" Specific Techniques for Different Flow Categories, Springer Verlag, 1987.
- 4. Fletcher C.A.J., "Computational Techniques for Fluid Dynamics 1" Fundamental and General Techniques, Springer Verlag, 1987.
- 5. Ghoshdasdidar P.S.,"Computer Simulation of flow and heat transfer" Tata McGraw-Hill Publishing Company Ltd., 1998.
- 6. Muralidhar K, and Sundararajan T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 1995.
- 7. Subas V.Patankar ,"Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 8. Taylor C and Hughes J.B., "Finite Element Programming of the Navier-Stokes Equation", Pineridge Press Limited, U.K., 1981.

Course	Title	WIND E	NERGY	TEC	HNO	LOGIES	M.Tech R	E II Sem			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18992	204	Elective- 3	L	Т	Р	С	Continuous Internal Assessment	inuous ernal ssment End Exams To			
			3	0	0	3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course	Objecti	ves:									
• Kn	ow the	energy conve	rsion tec	chnique	es in v	vind energy					
• Lea	arn abou	it wind turbin	ne compo	onents	and th	neir construc	ctions.				
Course	Outcon	nes : On succ	essful c	omple	tion o	f this cours	e, the students v	vill be able	to		
CO 1	Unders	stand the mod	lern win	d turbi	ne co	ntrol & mon	itoring				
CO 2	To und	erstand the fundamentals of wind energy and its conversion system									
CO 3	To lear	n gear coupled generator wind turbine components									
CO 4	To lear	rn modern wi	nd turbi	ne con	trol &	monitoring					

<u>UNIT I</u>

Wind Energy Fundamentals & Wind Measurements: Wind Energy Basics, Wind Speeds and scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Turbulence. Instrumentation for wind measurements, Wind data analysis, tabulation, Wind resource estimation, Betz's Limit, Turbulence Analysis.

<u>UNIT II</u>

Aerodynamics Theory & Wind Turbine Types: Airfoil terminology, Blade element theory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor & Blade), Types of loads; Sources of loads Vertical Axis Type, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Up Wind, Down Wind, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generator Drive /PMG/Rotor Excited Sync Generator.

UNIT III

Gear Coupled Generator Wind Turbine Components And Their Construction: Electronics Sensors/Encoder/Resolvers, Wind Measurement : Anemometer & Wind Vane, Grid Synchronization System, Soft Starter, Switchgear[ACB/VCB], Transformer, Cables and assembly, Compensation Panel, Programmable Logic Control, UPS, Yaw & Pitch System : AC Drives, Safety Chain Circuits, Generator Rotor Resistor controller (Flexi Slip), Differential Protection Relay for Generator, Battery/Super Capacitor Charger & Batteries/ Super Capacitor for Pitch System, Transient Suppressor/Lightning Arrestors, Oscillation & Vibration sensing.

<u>UNIT IV</u>

Direct Rotor Coupled Generator (Multipole)[Variable Speed Variable Freq.]: Excited Rotor Synch, Generator/PMG Generator, Control Rectifier, Capacitor Banks, Step Up/Boost Converter (DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltage and Current), Transformer, Safety Chain Circuits.

<u>UNIT V</u>

Modern Wind Turbine Control & Monitoring System: Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases: Remote Monitoring and Generation Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.

- 1. C-Wet : Wind Energy Resources Survey in India VI
- 2. Duffie A. and Beckmann W. A., "Solar Engineering of Thermal Processes, John Wiley, 1991.
- 3. Freris L.L., "Wind Energy Conversion Systems", Prentice Hall, 1990.
- 4. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, 1996.
- 5. John D Sorensen and Jens N Sorensen, "Wind Energy Systems", Woodhead Publishing Ltd, 2011.
- 6. Kaldellis J.K., "Stand alone and Hybrid Wind Energy Systems", CRC Press, 2010.
- 7. Mario Garcia Sanz, Constantine H. Houpis, "Wind Energy Systems", CRC Press 2012.
- 8. Spera D.A., "Wind Turbine Technology: Fundamental concepts of Wind TurbineEngineering", ASME Press, 1994.
- 9. Twidell J.W. and Weir A., "Renewable Energy Sources", EFN Spon Ltd., 1983.

Course	Title	ENER(WAS	GY CON TE HEA	ISERV AT RE	ATI COV	ON BY ERY	M.Tech	RE II Se	m		
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18992	207	Elective- 4	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTotal4060100				
			3	0	0	3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course	Objecti	ves:									
• 1 a s tu k e iii c	 • The industrial sector accounts for about 40 percent of the total energy consumed in India and are responsible for around one fourth of the total greenhouse gas emissions. This share is more than half of the total GHG emissions, if energy industries are considered together. It is estimated that somewhere between 30 to 50% of industrial energy input is lost as waste heat in the form of exhaust gases, cooling water, and heat lost from equipment surfaces and heated products. As the industrial sector continues efforts to improve its energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. 										
Course	Outcon	nes : On suco	cessful c	omple	tion o	of this cours	se, the students w	vill be able	to		
CO 1	To unc	lerstand the o	on basic	princip	les an	d available	technologies for v	waste heat			
	recove	ry.									
CO 2	To unc	lerstand indu	strial wa	ste hea	at reco	overy system	18.				
CO 3	To unc	lerstand Was	te heat b	oilers.							
CO 4	To und	lerstand the U	Utilizati c	on of in	dustri	ial waste hea	at.				

<u>UNIT I</u>

Introduction: heat losses, its quality and quantity, potential for energy conservation. Waste heat sources: steam, compressed air, refrigeration, flue gases, furnace/air stream exhaust, high grade heat, low grade heat

<u>UNIT II</u>

Optimal utilization of fossil fuels: Total energy approach; Coupled cycles and combined plants;Cogeneration systems

Energy analysis: Utilization of industrial waste heat; Properties of exhaust gas; Gas-to-gas, gas- to-liquid heat recovery systems; Recuperates and regenerators; Shell and tube heat exchangers; Spiral tube and plate heat exchangers

<u>UNIT III</u>

Waste heat boilers: various types and design aspects. Heat pipes: theory and applications in waste heat recovery.

Prime movers: sources and uses of waste heat; Fluidized bed heat recovery systems; Utilization of waste heat in refrigeration, heating, ventilation and air conditioning systems; Thermoelectric system to recover waste heat; Heat pump for energy recovery; Heat recovery from incineration plants

<u>UNIT IV</u>

Waste Heat Recovery calculations: Quantifying available heat (kWh), Pinch analysis, typical energy costs/construction costs, pay back analysis, thermo-economic viability.

<u>UNIT V</u>

Need for energy storage: Thermal, electrical, magnetic and chemical storage systems.

- 1. Hewitt, G. F., Shires, G. L., and Bott, T. R. (1993). Process Heat Transfer, CRC Press, Florida.
- 2. Flynn, A. M., Akashige, T., & Theodore, L. (2019). Kern's Process Heat Transfer. JohnWiley & Sons.
- 3. Goswami, D. Y., and Kreith, F. (2007). Energy Conversion, CRC Press.
- 4. Serth, R. W., & Lestina, T. (2014). Process heat transfer: Principles, applications and rulesof thumb. Academic press.
- 5. Beith, R. (Ed.). (2011). Small and micro combined heat and power (CHP) systems: advanced design, performance, materials and applications. Elsevier.
- 6. Khanna, S., & Mohan, K. (Eds.). (1996). Wealth from waste. Tata Energy Research Institute.
- 7. Eriksen, V. L. (Ed.). (2017). Heat Recovery Steam Generator Technology. WoodheadPublishing.

Course	e Title		MINI	PROJI	ECT		M.Tech	RE II Se	m		
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
1899	209	CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			0	0	20	3	100	-	100		
Interna	l Assess	ment									
Course	Objecti	ves:									
• 4	Acquire	and apply nev	w know	ledge a	s need	led, using ap	ppropriate learnin	g strategies	5.		
Course	Outcon	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to		
CO 1	Studen	nts will learn t	o surve	y the re	elevan	t literature s	such as books, nat	tional/interr	national		
	referee	d journals an	d contac	t resou	arce p	ersons for th	e selectedtopic o	f research.			
CO 2	Studen	nts will be abl	e to use	differe	nt exp	perimental te	echniques.				
CO 3	Studen	dents will be able to use different software/ computational/analytical tools.									
CO 4	Studen	ts will be abl	e to desi	gn and	deve	lop an exper	experimental set up/equipment/test rig.				
CO 5	Studen	Students will be able to conduct tests on existing set ups/equipment and drawlogical									
	conclu	sions from th	e results	s after	analyz	ing them.		U			

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

Course	Title	RENE	WABL	E ENF	ERGY	LAB	M.Tech	RE II Se	m			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks				
18992	210	CORE	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTot					
			0	0	4	3	50	50	100			
							End Exam Dura	ation: 3Ho	urs			
Course	Objecti	ves:										
	• The	main focus	in focus of this laboratory is to provide exposure and hands-on-skills									
	prac	practice to the students on various aspects of renewable energy sources and										
	tech	nology. The	students	would	l be al	ble to get de	tailed insights int	to the design	n			
	and	operational a	spects o	f renev	vable	energy devi	ces and systems.					
Course	Outcon	nes : On succ	cessful c	omple	tion o	of this cours	e, the students v	vill be able	to			
CO 1	To imp	oart knowledg	ge on fui	ndame	ntals o	of economic	principles and th	eir applicat	ions in			
	the bro	ad field of su	ipply and	d dema	and of	energy.						
CO 2	To ma	ke students ir	nquisitiv	e abou	t the p	problems of	energy economic	s and arous	ing			
	their ir	nterest on pra	ctical pr	oblem	solvir	ng skills.			U			
CO 3	To unc	lerstand the C	CI engine	e perfo	rmanc	ce using Die	sel fuel, Engine p	erformance	e			
	analys	is using synth	nesis gas			U						
CO 4	To und	lerstand the E	Experime	ental st	udy o	n thermal pe	erformance and e	fficiency of				
	biomas	SS.	T		5	1		5				

<u>UNIT I</u>

Preparation for Laboratory Experiments and report writing Basic concepts: Terminology used in experimental methods i.e. sensitivity, accuracy, uncertainty, calibration and standards; experimental system design and arrangement. Analysis of experimental data, Analysis of causes and types of experimental errors, uncertainty and statistical analysis of experimental data; Error analysis, Technical Communication: Report preparation of experimental work, use of graphs, figures, tables, software and hardware aids for technical communication.

<u>UNIT II</u>

Experiments:

Solar: Experimental study on thermal performance of solar water heater, solar dryers, solar cooker; solar thermal; solar PV module characterization with different configuration

Biomass: Experimental study on thermal performance and efficiency of biomass downdraft gasifier and sampling and analysis of air and flue gas from biomass energy systems i.e. gasifier, combustor and cook stoves using gas chromatography technique; Liquid bio-fuel production and characterization; Biogas production by anaerobic digestion and analysis.

Wind: Experimental study on Wind Energy Training System, Wind Turbine Emulator etc for power generation and energy assessment due to wind.

Fuel: Density, Viscosity, Flash-point, Fire-point Pour-point, ASTM distillation of liquid fuels; Proximate and Ultimate analysis, calorific value of solid fuels

UNIT III

Engine performance analysis: CI engine performance using Diesel fuel, Engine performance analysis using synthesis gas

UNIT IV

Instrumentation and control: Use of microprocessor kit, microcontroller, data acquisition and display experiments, performance evaluation of renewable energy systems (solar thermal, solar PV, Wind turbine, biomass gasifier) using microprocessor/microcontroller based data acquisitionsystems

<u>UNIT V</u>

Energy system Simulation: Photovoltaic system performance analysis using simulation tool; Hybrid energy systems using simulation tool; Building design and thermal performance analysis using simulation tool

Suggested texts and reference materials

Necessary laboratory instruction related to lab experiment and brochure will be provided by the lab instructor.

M.TECH.-III- SEMESTER SYLLABUS

Course	Title	FUELS	AND FECH	COM NOLO	BUST OGY	TION	M.Tech	RE III Se	em	
Course	Code	Category	Ηοι	ırs/We	eek	Credits	Maxim	um Marks		
1899	301	Elective-5	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTotal4060100			
			3	0	0	3	40	60	100	
Mid Exa	Mid Exam Duration: 2Hours End Exam Duration: 3Hou					urs				
Course	Objecti	ves:								
	• To i	mpart knowled	lge on	fossil	fuel ar	nd their com	bustion character	istics.		
	• To 1	nake students	inquisi	tive ab	out th	e problems o	of combustion.			
Course	Outcom	es : On succe	ssful c	omple	tion o	f this cours	e, the students w	vill be able	to	
CO 1	To und	lerstand the fue	el com	bustior	n proce	ess.				
CO 2	Apply	fundamental a	spects	of con	nbustio	on related pr	oblem and an un	derstanding	on the	
	combu	combustion appliances.								
CO 3	To und	lerstand the Pe	troleur	n as a s	source	e of energy.				
CO 4	To und	lerstand the Er	nission	s from	fuel	combustion s	systems.			

<u>UNIT-I</u>

Basics of fuels: Modern concepts of fuel, Solid, liquid and gaseous fuels, composition, basic understanding of various properties of solid fuels - heating value, ultimate analysis, proximate analysis, ash deformation points; liquid fuels - heating value, density, specific gravity, viscosity, flash point, ignition point (self, forced), pour point, ash composition and gaseous fuels.

<u>UNIT-II</u>

Coal as a source of energy: Coal reserves – World and India, Coal liquefaction process, various types of coal and their properties, Origin of coal, composition of coal, analysis and properties of coal, Action of heat on coal, caking and coking properties of coal; Processing of coal: Coal preparations, briquetting, carbonization, gasification and liquefaction of coal, Coal derived chemicals.

UNIT-III

Petroleum as a source of energy: Origin, composition, classification of petroleum, grading of petroleum; Processing of petroleum: Distillation of crude petroleum, petroleum products, purification of petroleum products – thermal processes, catalytic processes, specifications and characteristics of petroleum products.

Natural gas and its derivatives: Classification of gaseous fuels – natural gas and synthetic gases, Natural gas reserves - World and India, properties of natural gas – heating value, composition and density

UNIT-IV

Principles of combustion: Chemistry and Stoichiometric calculation, thermodynamic analysis and concept of adiabatic flame temperature; Combustion appliances for solid, liquid and gaseous fuels: working, design principles and performance analysis.

UNIT-V

Emissions from fuel combustion systems: Pollutants and their generation, allowed emissions, strategies for emission reduction, Euro and BIS norms for emission, recent protocols.

- 1. Raghavan, V. (2016). Combustion technology: essentials of flames and burners. John Wiley & Sons.
- 2. Sharma, S. P., & Mohan, C. (1984). Fuels and combustion. Tata McGraw Hill
- 3. Sarkar, S. (1974). Fuels and combustion. Universities Press. Orient Longman
- 4. Sharma, B. K. (1998). Fuels and Petroleum Processing. Krishna Prakashan Media.
- 5. Hsu, C. S., & Robinson, P. R. (Eds.). (2017). Springer handbook of petroleum technology.Springer.
- 6. Zheng, C., & Liu, Z. (Eds.). (2017). Oxy-fuel Combustion: Fundamentals, Theory and Practice. Academic Press.
- 7. Maurya, R. K., Maurya, R. K., & Luby. (2018). Characteristics and control of low temperature combustion engines. Springer.

Course	Title	ENVIRON AND PC	MENT DLLUI	TAL EI	NGIN CON	EERING FROL	M.Tech	RE III Se	em
Course	Code	Category	Hou	ırs/We	eek	Credits	Maxim	um Marks	
1899	302	Elective-5	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
Mid Exa	Exam Duration: 2Hours End Exam Duration: 3Hours								urs
Course	Objecti	ves:							
	• On	successful Co	mpleti	on of	this c	ourse the st	udent will be un	nderstand E	Emission
	stan	dards, waste	mana	gemen	t po	wer genera	tion and pollut	tion from	various
Course	Outcom	istries.	a ful a	omnlo	tion	f this cours	a the students u	rill be able	to.
Course		les : On succe	ssiul c	ompie		or this cours	e, the students w	vili be able	<u>10</u>
01	10 imp and eco	o-legislations	e on t	ne atm	osphe	re and its pr	esent condition,	global warr	nıng
CO 2	To det	ail on the source	res of	air wa	ter an	d noise nolli	ition and possible	e solutions	for
002	mitigat	itigatingtheir degradation.							
CO 3	To elal	o elaborates on the technologies available for generating energy from waste.							
CO 4	To ana	lyze waste ma	nagem	ent.			¥ ¥		

<u>UNIT I</u>

Introduction: Global atmospheric change – greenhouse effect – Ozone depletion - natural cycles - mass and energy transfer — material balance — environmental chemistry and biology — impacts — environmental. Legislations.

<u>UNIT II</u>

Air Pollution: Pollutants - sources and effect – air pollution meteorology – atmospheric dispersion – indoor air quality - control methods and equipments - issues in air pollution control – air sampling and measurement.

<u>UNIT III</u>

Water Pollution: Water resources - water pollutants - characteristics - quality - water treatment systems - waste water treatment - treatment, utilization and disposal of sludge - monitoring compliance with standards.

<u>UNIT IV</u>

Waste Management: Sources and Classification – Solid waste – Hazardous waste - Characteristics – Collection and Transportation - Disposal – Processing and Energy Recovery – Waste minimization.

<u>UNIT V</u>

Other Types of Pollution From Industries: Noise pollution and its impact - oil pollution - pesticides - instrumentation for pollution control - water pollution from tanneries and other industries and their control — environment impact assessment for various projects — case studies. Radiation pollution: types, sources, effects, control of radiation pollution.

- 1. Arcadio P Sincero and G.A. Sincero, Environmental Engineering A Design Apporach, Prentice Hall of India Pvt. Ltd, New Delhi, 2002.
- 2. Bishop P., Pollution Prevention: Fundamentals and Practice, McGraw-Hill International Edition, McGraw-Hill book Co, Singapore, 2000.
- 3. G. Masters, Introduction to Environmental Engineering and Science Prentice Hall of India Pvt. Ltd, New Delhi, 2003.
- 4. Gilbert M. Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Prentice Hall, 1998.
- 5. H.Ludwig, W. Evans, Manual of Environmental Technology in Developing Countries, International Book Company, Absecon Highlands N.J. (1991).
- 6. H.S. Peavy, D.R. Rowe and G. Tchobanoglous, Environmental Engineering McGraw-Hill Book Company, NewYork, (1985).
- 7. Rao C.S., Environmental Pollution Control Engineering, 2nd Edition, New Age InternationalPublishers, 2006.

Course	Title	ECONOM RENEWA	ICS A BLE I	ND FI ENER	NAN GY S	CING OF YSTEMS	M.Tech	RE III Se	m			
Course	Code	Category	Hou	ırs/We	ek	Credits	Maxim	um Marks				
18993	303	Elective-5	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTota4060100					
			3	0	0	3	40	60	100			
Mid Exa	m Dur	ation: 2Hours	5				End Exam Dura	ation: 3Ho	urs			
Course (Objecti	ves:	of anarow and its financing is a broad scientific area which includes topics									
•	Econon	nics of energy	and it	s finar	ncing	is a broad s	scientific area wh	ich include	es topics			
1	related	to economic a	economic aspects of supply and use of energy in society in general and the									
1	nation a	as a whole for	its gro	wth ar	nd dev	velopment ne	eeds. Hence, it is	very impo	rtant for			
1	the stuc	lents to unders	stand th	ne basi	cs of	economic p	rinciples that gov	vern the sup	oply and			
	demand	l of energy in t	he con	text of	mode	ern civilizati	on. This course a	ims at brid	ging the			
1	technol	ogical aspects	of ener	gy res	ource	s to that of it	ts economic princ	ples.				
Course (Outcon	nes : On succe	ssful c	omple	tion o	of this cours	e, the students w	vill be able	to			
CO 1	To imp	oart knowledge	on fui	ıdameı	ntals o	of economic	principles and the	eir applicat	ions in			
	the bro	ad field of sup	ply and	d dema	and of	energy.						
CO 2	To ma	ke students inc	uisitiv	e abou	t the p	problems of	energy economics	s and arous	ing			
	their in	iterest on pract	ical pr	oblem	solvir	ng skills.			•			
CO 3	To und	lerstand the Co	oncepts	of eco	nomi	c attributes.						
CO 4	To unc	lerstand the Ap	plicati	on of e	econo	metrics.						

<u>UNIT I</u>

Energy economics: Basic concepts, energy data, energy cost, energy balance. Relevance of economic and financial viability evaluation of renewable energy technologies, Basics of engineering economics.

<u>UNIT II</u>

Energy accounting framework: Economic theory of demand, production and cost market structure; National energy map of India, Energy subsidy – National and international perspectives.

<u>UNIT III</u>

Concepts of economic attributes: Calculation of unit cost of power generation from different sources with examples, different models and methods, Social cost – benefit analysis of renewable energy technologies. Financial feasibility evaluation of renewable energy technology dissemination models, Volume and learning effects on costs of renewable energy systems, Dynamics of fuel substitution by renewable energy systems and quantification of benefits.

UNIT IV

Application of econometrics: input and output optimization; energy planning and forecasting - different methods, Economic approach to environmental protection and management,

<u>UNIT V</u>

Financial incentives: Fiscal, financial and other incentives for promotion of renewable energy systems and their effect on financial and economic viability, electricity tariff types. Financing of renewable energy systems, Carbon finance potential of renewable energy technologies and impact of other incentives. Software for financial evaluation of renewable energy systems.

Casestudies on financial and economic feasibility evaluation of renewable energy projects.

- 1. Campbell, H. F., & Brown, R. P. (2003). Benefit-cost analysis: financial and economicappraisal using spreadsheets. Cambridge University Press.
- 2. Kandpal, T. C., & Garg, H. P. (2003). Financial evaluation of renewable energy technologies. MacMillam India Limited.
- 3. Park, C. S. (2002). Contemporary engineering economics (Vol. 4). Upper Saddle River, NJ: Prentice Hall.
- 4. Kroemer, K. H., Kroemer, H. B., & Kroemer-Elbert, K. E. (2001). Ergonomics: how todesign for ease and efficiency. Pearson College Division.
- 5. Dorsman, A. B., Ediger, V. Ş., & Karan, M. B. (Eds.). (2018). Energy Economy, Financeand Geostrategy. Springer.
- 6. Banks, F. E. (2012). Energy economics: a modern introduction. Springer Science & Business Media.
- 7. Thuesen G. J. and Fabrycky W. J. (2001); Engineering Economy, Ninth Edition, PrenticeHall India

Course	Title	RENE	WABLI INTE(E ENE GRAT	RGY ION	GRID	M.Tech	RE III Se	em		
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
1899	304	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
Mid Exa	am Dur	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course	Objecti	ves:									
The	e genera	tion of elect	ricity fro	om rer	newab	wable energy sources includes technologies					
suc	h as hy	dropower, w	ind pow	er, sol	lar po	wer, tidal a	nd wave power,	geotherma	l		
pow	ver, and	power from	ver from renewable biomass. These sources are termed as distributed								
pow	wer generators and they need to be integrated among themselves and with the										
con	vention	al power grid	for stor	age an	d unir	terrupted po	ower flow. Grid i	ntegration i	s		
an	importa	nt aspect of	renewa	ble er	nergy	engineering	and needs to	be formall	V		
stuc	lied	in uspeer of	10110 11 0		1018)	0	, and needs to	ou ioiman	5		
Course	Anter			mnla	tion	f this cours	o the students u	rill be able	to		
Course CO 1	To und	les: OII succ	listribute	d gone	ration	a systems to	identify emergin		to thit		
	and the	is understand	the real	u gene	nts fo	r the correct	integration of re-	newshle en	un n, ergies		
	into the	e nowergrid	i the requ		1113 10		integration of re-		cigics		
CO 2	To und	lerstand power	er electro	onic co	mpon	ents necessa	ary for integration	n to include			
	inverte	ers and their o	ontrol i	sland o	letecti	ion systems	and maximum p	ower point			
	trackin	lg.					P	Point			
CO 3	To unc	lerstand the H	ower co	ntrol a	nd ma	anagement s	vstems				
CO 4	To und	lerstand the S	Simulatio	on of g	rid co	nnected/off	grid renewable er	nergy syster	m.		

<u>UNIT I</u>

Power system operation: Introduction on electric grid, Supply guarantees, power quality and Stability, Introduction to renewable energy grid integration, concept of mini/micro grids and smart grids; Wind, Solar, Biomass power generation profiles, generation electric features, Load scheduling

<u>UNIT II</u>

Power electronic systems: Introduction to basic analysis and operation techniques on power electronic systems; Functional analysis of power converters, Power conversion schemes between electric machines and the grid, Power systems control using power converters; Electronic conversion systems application to renewable energy generation systems, Basic schemes and functional advantages; Wind Power and Photovoltaic Power applications

<u>UNIT III</u>

Power control and management systems: Grid integration, island detection systems, synchronizing with the grid; Issues in integration of converter based sources; Network voltage management; Power quality management and Frequency management; Influence of PV/WECS on system transient response

<u>UNIT IV</u>

Simulation: tools, Simulation of grid connected/off grid renewable energy system (PV/WECS); Design of grid-interactive photovoltaic systems for house hold applications.

- 1. Kersting W. H. (2004). Distribution System Modeling and Analysis, Second Edition, CRCPress
- 2. Vittal V. and Ayyanar R. (2012). Grid Integration and Dynamic Impact of Wind Energy, Springer
- 3. Bollen M. H. and Hassan F. (2011). Integration of Distributed Generation in the PowerSystem, Wiley-IEEE Press
- 4. Keyhani A. (2011). Design of Smart Power Grid Renewable Energy Systems, Wiley– IEEEPress
- 5. Muhannad H. R. (2004). Power Electronics: Circuits, Devices and Applications, PearsonPrentice Hall
- 6. Gellings C. W. (2009). The Smart Grid: Enabling Energy Efficiency and Demand Response, First Edition, CRC Press
- 7. Teodorescu R. Liserre M. Rodriguez P. (2011). Grid Converters for Photovoltaic and WindPower Systems, First Edition, Wiley-IEEE Press

Course	Title	ELECTRIC VEHICLE TECHNOL					M.Tech RE III Sem				
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks				
18993	305	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
Mid Exam Duration: 2Hours						End Exam Duration: 3Hours					
Course Objectives:											
•	The ob	jective of thi	is course	e is to	provi	ide an advai	nced level under	standing or	electric		
	vehicle	s and batterie	es that a	re use	d in s	uch vehicles	s. The course wil	ll impart kr	owledge		
	on the	fundamenta	l electro	ochemi	istry	of battery s	systems, design	of electric	vehicle,		
	busines	s model, poli	cy, impa	act etc.							
Course	Outcon	nes : On succ	essful c	omple	tion o	of this cours	e, the students w	vill be able	to		
CO 1	To get	the knowledg	ge of ele	ctric v	ehicle	s and batteri	es systems.				
CO 2	To get the knowledge of design of electric vehicle, business model, policy, impact etc.										
CO 3	To unc	lerstand the E	Energy S	torage	Requ	irements.					
CO 4	To unc	lerstand Fund	lamental	of Re	charge	eable batteri	es.				

<u>UNIT I</u>

Review of Conventional Vehicle: Introduction to Hybrid Electric Vehicles: Types of EVs, Hybrid Electric Drive-train, Tractive effort in normal driving, Energy consumption Concept of Hybrid Electric Drive Trains

UNIT II

Architecture of Hybrid Electric: Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains, Electric Propulsion unit, Configuration and control of DC Motor drives, Induction Motor drives, Permanent Magnet Motor drives, switched reluctance motor

UNIT III

Sizing the drive system: Design of Hybrid Electric Vehicle and Plug-in Electric Vehicle, Energy Management Strategies, Automotive networking and communication, EV and EV charging standards, V2G, G2V, V2B, V2H.

UNIT IV

Energy Storage Requirements:- Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices.

<u>UNIT V</u>

Fundamental of Rechargeable batteries: Electrochemistry, Lithium batteries, Nickel metal hydride battery, Lead-acid battery, High temperature batteries for back-up applications, Flow batteries for load leveling and large scale grid application, Battery applications for stationary and secondary use, Battery chargers and battery testing procedures, Battery management, Regulations and safety aspects of high voltage batteries, Super capacitors.

Business: E-mobility business, electrification challenges, Business- E-mobility business, electrification challenges, Connected Mobility and Autonomous Mobility- case study E-mobility Indian Roadmap Perspective.

Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs.Simulations and case studies in above mentioned areas.

- 1. Emadi, A. (Ed.). (2014). Advanced electric drive vehicles. CRC Press.
- 2. Larminie, J., & Lowry, J. (2012). Electric vehicle technology explained. John Wiley &Sons.
- 3. Fenton, J., & Hodkinson, R. (2001). Lightweight electric/hybrid vehicle design. Elsevier.
- 4. Dincer, I., Hamut, H. S., & Javani, N. (2016). Thermal management of electric vehiclebattery systems. John Wiley & Sons.
- 5. Williamson, S. S. (2013). Energy management strategies for electric and plug-in hybridelectric vehicles. New York, NY: Springer.
- 6. Pistoia, G., & Liaw, B. (Eds.). (2018). Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. Springer.
- 7. Reddy, T. B. (2011). Linden's handbook of batteries (Vol. 4). New York: Mcgraw-hill.
- Larminie, J., & Lowry, J. (2012). Electric vehicle technology explained. John Wiley &Sons.

Course Titl	e POWE RENEW	CR ELEC ABLE I	CTRO ENER	NICS GY S	FOR YSTEMS	M.Tech RE III Sem		
Course Cod	e Category	Category Hours/Week Credits Maximum Mar						
1899306	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0	0	3	40	60	100
Mid Exam D	uration: 2Hou	rs				End Exam Dura	ation: 3Ho	urs
Course Obje	ctives:							
• To provide knowledge about the stand alone and grid connected renewable energy systems.								
• To equ	p with required	l skills to	o deriv	e the	criteria for t	he design of pow	ver converte	ers
forrene	wable energy a	oplicatio	ns.					
• To ana	yse and compre	ehend the	e vario	us ope	erating mode	es of wind electri	cal generato	ors
and sol	arenergy system	ns.		1	C		U	
To dest convert	 To design different power converters namely AC to DC, DC to DC and AC to AC converters forrenewable energy systems. 							
	omos : On suo	power po	omnlo	tion o	algorithms.	o the students w	vill be able	to
	onnes : On suc	f avillaby		uon o	a to develop	e, the students v	n noint troo	lu
algo	After completion of syllabus student able to develop maximum power point tracking algorithms.							
CO 2 Und	erstand the Kno	owledge	in po	wer c	onverters na	amely AC to DC	C, DC to I	DC and
AC	to AC conver	ters forr	enewal	ole en	ergy system	s		
CO3 To	understand Ana	lysis of V	Wind a	nd PV	/ Systems.			
CO 4 To	understand the l	Hybrid R	enewa	ble E	nergy Syster	ns.		

<u>UNIT-I</u>

Introduction: Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources ocean, Biomass, Hydrogen energy systems: operating principles and characteristics of: Solar PV, Fuel cells, wind electrical systems-control strategy, operating area.

<u>UNIT-II</u>

Electrical Machines for Renewable Energy Conversion: Review of reference theory fundamentalsprinciple of operation and analysis: IG, PMSG, SCIG andDFIG.

<u>UNIT-III</u>

Power Converters: Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

<u>UNIT-IV</u>

Analysis of Wind And PV Systems: Standalone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS-Grid Integrated solar system.

<u>UNIT-V</u>

Hybrid Renewable Energy Systems: Need for Hybrid Systems- Range and type of Hybrid systems-Case studies of Wind-PV- Maximum Power Point Tracking (MPPT).

- 1. Bhadra.S.N, Kastha.D , and Banerjee.S, "Wind Electrical Systems", Oxford University Press, 2009.
- 2. Gray L. Johnson, "Wind energy system", Prentice hall linc, 1995.
- 3. Khan.B.H, "Non-conventional Energy sources", Tata McGraw-hill Publishing Company, NewDelhi.
- 4. Mukund.R.Patel," Wind and Solar Power Systems", 2nd Edition, Taylor and Francies, 2001.
- 5. Rashid M. H "Power electronics Hand book", Academic press, 2001.
- 6. Rai G.D., "Non-conventional energy sources", Khanna publishers, 1993.
- 7. Rai G.D., "Solar energy utilization", Khanna publishers, 1993.
- 8. Roger A. Messenger, Jerry Ventre," Photovoltaic System Engineering", CRC Press, 2004.

Course	Title	AD CON	VANCE ABUST	D INT ION E	M.Tech RE III Sem					
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks			
1899307		Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 2HoursEnd Exam Duration: 3Hours										
Course (Objecti	ves:								
• To ign	gain in	sight on the gines.	workin	ıg prin	ciple	of spark ig	nition engines a	nd compre	ssion	
• To	study th	e pollutant fo	ormatior	n and it	s cont	trol in IC eng	gines.			
• To	study th	e recent tech	nologies	s adopt	ed in	IC engine ar	oplications.			
Course (Outcom	es : On succ	cessful c	omple	tion o	f this cours	e, the students w	vill be able	to	
CO 1	To und	derstand the	working	gprinci	ple of	f IC engines	s, source of poll	ution forma	ation	
	and its control and recent trends in IC engines									
CO 2	To und	derstand the	Compre	ssion I	gnitio	n Engines				
CO 3	To und	derstand the	Pollutan	t Form	ation	and Control				
CO 4	To uno	derstand the	Recent 7	Frends						

<u>UNIT I</u>

SPARK IGNITION ENGINES: Spark ignition Engine mixture requirements – Fuel – Injection systems – Mono point, Multipoint injection, Direct injection – Stages of combustion – Normal and abnormal combustion – factors affecting knock – Combustion chambers.

<u>UNIT II</u>

COMPRESSION IGNITION ENGINES: States of combustion in C.I. Engine – Direct and indirect injection systems – Combustion chambers – Fuel spray behavior – spray structure, spray penetration and evaporation – air motion – Introduction to Turbo charging.

<u>UNIT III</u>

POLLUTANT FORMATION AND CONTROL: Pollutant – Sources – Formation of carbon monoxide, Unburnt hydrocarbon, NOx, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters and Particulate Traps – Methods of measurements and Introduction to emission norms and Driving cycles.

UNIT IV

ALTERNATIVE FUELS: Alcohol, Hydrogen, Natural Gas and Liquefied Petroleum Gas- Properties, Suitability, Merits and Demerits as fuels, Engine Modifications.

<u>UNIT V</u>

RECENT TRENDS: Lean Burn Engines – Stratified charge Engines – homogeneous charge compression ignition engines – Plasma Ignition – Measurement techniques – laser Doppler, Anemometry, and Nano technology in IC Engines.

- 1. Duffy Smith, Auto fuel Systems, The Good Heart Willox Company, Inc., 1989.
- 2. Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
- 3. K.K. Ramalingam, Internal Combustion Engine fundamentals, Scitech Publications, 2002.
- 4. Kirpal Singh, Automobile Engineering Vol I, Standard Publishers, Delhi 2013.
- 5. R.B. Mathur and R.P. Sharma, Internal Combustion Engines, Dhanapat Rai Ritain, 1993.
- 6. V. Ganesan, Internal Combustion Engines, II Edition, Tata McGraw-Hill Education, 2002.
- 7. Willard W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, Prentice Hall, 1997.

Course	Title	BIOMAS AN	SS CHA ND MA	RACI NAGE	TERIZ MEN	ZATION T	M.Tech	RE III Se	em		
Course	Code	Category	Hours/Week			Credits	Maximum Marks				
1899;	308	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
Mid Exa	am Dura	ation: 2Hou	rs				End Exam Dura	ation: 3Ho	urs		
Course Objectives: There is an immense prospect in the biomass feedstock's to address the growing energy demands. However biomass recalcitrant that is not easy to break into simple sugars and varied physio- chemical attributes of biomass that is biomass growing at different regions, seasons and field conditions showing varied physio-chemical properties impede the biomass energy conversion process largely. Overall, this course provides overall information on concepts, tools and techniques for converting the different biomass into various energy forms for starting the biomass based energy production and its management.											
Course	Outcom	es : On succ	essful c	omple	tion o	of this cours	e, the students v	vill be able	to		
	To und	erstand the o	n basics	of b10	mass	resources an	a it composition.	1			
CO 2	To und	erstand biom	lass sam	ple pre	eparati	ion, methods	s of pre-treatment	is and			
<u> </u>	Taural	erization.		4 ha hi-	a la a <i>e</i> re -			fhiomoor			
CO 3	TO UND	erstand and a			cnem	$\frac{1}{1}$	mate properties o	i diomass.			
CO 4	To und	erstand supp	ly chain	metho	ds of	biomass ma	nagement.				

<u>UNIT I</u>

Introduction: properties of biomass, different energy conversion methods combustion, Bio Energy Resources, World Bio Energy Potential, India's Bio Energy Potential, Biomass Resources and classification, Physio - chemical characteristics.

Biomass Cookstoves: Energy Systems Energy Efficient Wood Stoves, Traditional Stoves, Energy Efficient Cooking and Space heating Stoves, Metal Stoves Improved Gasifier Stoves, Current Research Status, Pollution due to smoke emissions, Improved Cookstoves, National Policy on cookstove.

<u>UNIT II</u>

Characterization of biomass feedstock: physico-chemical properties, ultimate, proximate, compositional, calorific value, thermogravimetric, differential thermal and ash fusion temperature analyses; classification of biomass feedstock.

<u>UNIT III</u>

Application of biomass fuel: Biomass based incineration plant for heat generation; co-firing of biomass for heat generation for industrial processes; Biomass fuelled combustion devices for cooking and heating applications; Utilization of biomass in external combustion engines including steam turbine power plant and Sterling engines; Case studies for setting up biomass based small power plant (~ 1MW) capacity for rural electrification; analysis of carbon neutral and carbon credit.

UNIT IV

Biomass Management: Introduction to biomass management, biomass resource assessment management techniques/supply chains, Processing of paddy straw, densification-Extrusion process, pellets, mills and cubers, Bailing-classification, uses; residue management for surface mulch and soil incorporation, Paddy Straw choppers and spreaders as an attachment to combine Harvester, Mulch seeder, Paddy Straw Chopper-cum-Loader, Balar for collection of straw; Processing of straw/ fodder for animal use; Agricultural and horticultural use, Cushioning material for fruits and vegetables, Mulching and Composting, Paper and cardboard manufacturing, Straw as a fuel.

<u>UNIT V</u>

Biomass resource assessment management techniques/supply chains: Elements of an Assessment or Feasibility Study, Objectives of biomass resource assessment, Biomass resource from agricultural and residues, Biomass resource from forestry, Biomass resource from live stock (animals), Technologies available for the conversion of biomass, Techno-economic feasibility of suitable renewable energy generation system

- 1. Cheng, J. (Ed.). (2017). Biomass to renewable energy processes. CRC press.
- 2. Strezov, V., & Anawar, H. M. (Eds.). (2018). Renewable Energy Systems from Biomass: Efficiency, Innovation and Sustainability. Crc Press.
- 3. Holm-Nielsen, J., & Ehimen, E. A. (Eds.). (2016). Biomass supply chains for bioenergy and biorefining. Woodhead Publishing.
- 4. Jeguirim, M., & Limousy, L. (Eds.). (2019). Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications. Elsevier.
- 5. Mukunda, H. S. (2011). Understanding clean energy and fuels from biomass. Wiley India.
- 6. Tumuluru, J. S. (Ed.). (2018). Biomass preprocessing and pretreatments for production of biofuels: mechanical, chemical and thermal methods. CRC Press.
- 7. Dayton, D. C., & Foust, T. D. (2019). Analytical Methods for Biomass Characterizationand Conversion. Elsevier.

Course	rse Title DISS		ERTA	ΓΙΟΝ	PHAS	SE-I	M.Tech RE III Sem		
Course	Code	Category	Hours/Week			Credits	Maximum Marks		
1899309		CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			0	0	20	10	100	-	100
Internal Assessment									
Course Objectives:									
	Ū								
Course	Outcon	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to
CO 1	Studen	nts will learn t	o surve	y the re	elevan	t literature s	such as books, nat	ional/interr	national
	referee	d journals and	d contac	t resou	arce p	ersons for th	e selectedtopic of	f research.	
CO 2	Studen	nts will be able	e to use	differe	nt exp	perimental te	chniques.		
CO 3	Studen	ts will be able	e to use	differe	nt sof	tware/ comp	outational/analytic	cal tools.	
CO 4	Studen	ts will be able	e to desi	gn and	devel	lop an exper	imental set up/eq	uipment/tes	st rig.
CO 5	Studen	ts will be able	e to con	duct te	sts on	existing set	ups/equipment's	and drawlo	gical
	conclu	sions from th	e results	after	analyz	ing them			

Course Contents

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

M.TECH.-IV- SEMESTER SYLLABUS

Course	e Title	DISSERTATION PHASE-II M.Tech RE IV					RE IV Se	lem	
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks		
1899401		CORE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			0	0	32	16	50	50	100
Internal	Internal Assessment								
Course	Course Objectives:								
Course	Outcom	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to
CO 1	Studen	ts will develo	op attitue	de of li	felong	g learning ar	nd will develop in	terpersonal	skills to
	deal w	ith people wo	orking in	divers	sified	field will.			
CO 2	Studen	ts will learn t	o write	technic	cal rep	orts and res	earch papers to p	ublish atnat	tional
	and int	ernational lev	vel.						
CO 3	Studen technic	ts will develo ally qualified	p strong l audien	g comr ce.	nunica	ation skills to	o defend their wo	ork in front	of

Course Contents

It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.
AUDIT COURSE-I & II SYLLABUS

Course	Title	ENGLISH FOR RESEARCH PAPER WRITING (Audit Course)					M.Tech RE I / II Sem			
Course	Code	Category	Ho	Hours/Week			Maxim	Maximum Marks		
1870A01	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2	0	0	0	40		40	
Mid Exam Duration: 2 Hours										
Course (Objecti	ives:								
• U • L	Understa earn al	and that how to bout what to wr	improve ite in eae	e your w ch sectio	vriting s on	kills and l	evel of readabil	ity		
• U fi	Jndersta irst-tim	and the skills ne e submission	eded w	hen writ	ing a T	itle Ensure	the good quali	ty of pape	r at very	
Course Outcomes: On successful completion of this course, the students will be able to										
CO 1	Under	stand Writing s	kills and	l level o	f Reada	ability.				
CO 2	Analy	ze what to write	e in each	section	•					

<u>UNIT I</u>

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.

<u>UNIT II</u>

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction.

<u>UNIT III</u>

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

<u>UNIT IV</u>

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.

<u>UNIT V</u>

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Text Books:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book .
- 4. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

Reference Books:

1. Adrian Wallwork, English for Academic Research: Grammar Usage and Style, Springer.

Course	Title	DISASTER MANAGEMENT (Audit Course)				M.Tech RE I / II Sem				
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks			
1870A	\02	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			2	0	0	0	40		40	
	Mid Exam Duration: 2 Hours									
Course	Objecti	ves:								
	 Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in. 									
Course Course	Under	stand foundation	ns of ha	zard dis	asters	and natural	l/social phenom		10	
CO 1	Analyz	ze Repercussion	$\frac{115}{115}$ of dis	asters an	d haza	rds		1011u.		
	2 11101 y 2				u 11u2u					
CO 3	Unders	stand key conce	pts in d	isaster ri	sk redu	iction and	humanitarian re	esponse.		

<u>UNIT I</u>

Introduction to Disaster: Definition, Factors and Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

<u>UNIT II</u>

Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

<u>UNIT III</u>

Disaster Prone Areas In India

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

<u>UNIT IV</u>

Disaster Preparedness and Management

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

<u>UNIT V</u>

Risk Assessment

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People'sParticipation In Risk Assessment. Strategies for Survival.

Disaster Mitigation

Meaning, Concept and Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Text Books:

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.

2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

Reference Books:

- 1. Fundamentals of Disaster Management, Shekhawat R.S, Bhatnagar Harshul.
- 2. Disaster management, Ruthra, Lakshmi Publications.
- Disaster Management and Preparedness, Nidhi Gauba Dhawan, Ambrina Sardar Khan, CBS Publishers.

Course	Title	SANSK	RIT FO KNOV (Audit	DR TEC VLEDG Course	M.Tech RE I / II Sem					
Course	Code	Category	Ho	Hours/Week Credits			Maximum Marks			
1870	A03	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			2	0	0	0	40		40	
Mid Exam Duration: 2 Hours									I	
Course	Objecti	ves:								
	•To get	a working kno	wledge	in illustı	rious Sa	unskrit, the	scientific langu	uage in the	e world	
	•Learni	ng of Sanskrit	to impro	ove brair	n functi	oning.				
	 Learni subject 	ng of Sanskrit ets enhancing tl	to devel	op the loory powe	ogic in : er.	mathemati	cs, science & ot	her		
	•The er	igineering scho	lars equ	ipped w	ith San	skrit will b	be able to explore	re		
	the hu	ige knowledge	from an	cient lite	erature.					
Course	Outcon	nes: On succes	sful con	npletion	of this	course, tl	he students wil	l be able	to	
CO 1	Understand Sanskrit grammar and Composition.									
CO 2	Under	stand roots of to	echnical	informa	tion ab	out Sanskı	rit literature.			
CO 3	Under	stand Technica	l concep	ts of En	gineeri	ng.				

<u>UNIT I</u>

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

<u>UNIT III</u>

Order Introduction of roots Technical information about Sanskrit Literature

<u>UNIT III</u>

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Text Books:

1. Dr. Vishwas, "Abhyaspustakam" - Samskrita-Bharti Publication, New Delhi.

2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication.

3. Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi.

Course	Title	VA	VALUE EDUCATION (Audit Course)					M.Tech RE I / II Sem		
Course	Code	Category	Hours/Week Credits				Maximum Marks			
1870A04	A04	Audit Course	L T P			С	Continuous Internal Assessment	End Exams	Total	
			2	0	0	0	40		40	
Mid Exam Duration: 2 Hours										
Course	Objecti	ives:								
	• Unc	derstand value of	of educa	tion and	self- d	evelopmen	ıt			
	• Imb	bibe good value	s in stud	lents						
	• Let	the should kno	w about	the imp	ortance	e of charact	ter			
Course	Outcon	nes: On succes	sful con	pletion	of this	s course, tl	he students wil	l be able	to	
CO 1	Know	ledge of self-de	velopme	ent						
CO 2	Learn	the importance	of Hum	an value	es					
CO 3	Develo	oping the overa	ll person	ality						

<u>UNIT I</u>

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism.

Moral and non- moral valuation. Standards and principles. Value judgements

<u>UNIT II</u>

Importance of cultivation of values.

Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

<u>UNIT III</u>

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline.

Punctuality, Love and Kindness.

Avoid fault Thinking.

Free from anger, Dignity of labour.

Universal brotherhood and religious tolerance.

True friendship.

Happiness Vs suffering, love for truth.

Aware of self-destructive habits.

Association and Cooperation.

Doing best for saving nature

<u>UNIT IV</u>

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence ,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

Text Books:

- 1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.
- 2. John Haffai, Lead on & How to win over worry, World Book Publisher.
- 3. Swami Vivekananda, Call to the Youth for Nation Building, Advaita Ashrama, Calcutta.
- 4. Swami Vivekananda, Youth and Modern India, Rama Krishna Mission, Chennai.

Reference Books:

1. M.G. Chitakra, Education and Human values, A.P.H. Publishing corporation, New Delhi.

Course Title	CONSTITUTION OF INDIA (Audit Course)					M.Tech	RE I / II S	Sem
Course Code	Category	Ho	urs/We	ek	Credits	Maximum Marks		
1870A05	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		2	0	0	0	40		40
Mid	Exam Duratio	n: 2 Ho	urs					
Course Object	tives:							
 Onderstand the premises informing the twin themes of liberty and freedom from a civil rights perspective. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution 								
Course Outco	mes: On succes	sful con	pletion	of this	s course, tl	he students wil	l be able	to
CO1 Discu	ss the growth of	f the der	nand for	civil r	ight s in In	dia for the bulk	c of Indian	ns before
the ar	rival of Gandh	$\frac{1}{1}$ in Ind	an pol	itics	1	<u> </u>		1.1
CO 2 Discu conce	ss the intellective ptualization of	ual orig	ins of t reforms	he frai leadin	ne work on the work of the work of the work of the mean set of the mean set of the work of	of argument that lution in India	at inform	ed the
CO 3 scuss t	the circumstance	es surrou	unding th	ne foun	dation of t	he Congress Sc	ocialist Pa	rty [CSP]
under	the leadership	of Jav	vaharlal	Nehru	and the e	eventual failure	of the pr	oposal of
direct	elections throug	gh adult	suffrage	in the	Indian Con	nstitution.		
CO 4 scuss t	he passage of t	the Hind	iu Code	e Bill c	of 1956			

<u>UNIT I</u>

History of Making of the Indian Constitution:

History, Drafting Committee, (Composition & Working)

Philosophy of the Indian Constitution:

Preamble, Salient Features

<u>UNIT II</u>

Contours of Constitutional Rights & Duties:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

<u>UNIT III</u>

Organs of Governance:

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions **Executive:**

President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

<u>UNIT IV</u>

Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.

Pachayati raj: Introduction, PRI: Zila Pachayat.

Elected officials and their roles, CEO Zila Pachayat: Position and role.

Block level: Organizational Hierarchy (Different departments),

Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

<u>UNIT V</u>

Election Commission:

Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners.

State Election Commission: Role and Functioning.

Institute and Bodies for the welfare of SC/ST/OBC and women.

Text Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course	Title	PEDAGOGY STUDIES (Audit Course)					M.Tech RE I / II Sem		
Course	Code	Category	Но	urs/We	urs/Week Credits Maximum Marks				KS
1870 A	A 06	Audit Course	L	L T P			Continuous Internal Assessment	End Exams	Total
			2	0	0	0	40		40
Mid Exam Duration: 2 Hours									
Course C	Course Objectives:								
	• Rev	view existing ev	idence o	on the	review	topic to	inform program	mme desi	ign and
	poli	cy making un	lertaken	by the	DfID, o	ther agence	cies and researc	chers.	
	• Iden	ntify critical evi	dence ga	ips to gu	ide the	developme	ent.		
Course	Outcon	nes: On succes	sful con	pletion	of this	course, tl	he students wil	l be able	to
CO 1	What classroo	pedagogical proms in developi	actices ng coun	are bei tries?	ng use	d by teac	chers in forma	l and inf	formal
CO 2	2 What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?								
CO 3	How c guidanc	an teacher educe e materials bes	cation (or the support	curriculu t effectiv	im and ve peda	practicum 1gogy?	and the school	ol curricu	lum and

<u>UNIT I</u>

Introduction and Methodology:

Aims and rationale, Policy background, Conceptual framework and terminology

Theories of learning, Curriculum, Teacher education.

Conceptual framework, Research questions.

Overview of methodology and Searching.

<u>UNIT II</u>

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.

Curriculum, Teacher education.

<u>UNIT III</u>

Evidence on the effectiveness of pedagogical practices

Methodology for the in depth stage: quality assessment of included studies.

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

Theory of change.

Strength and nature of the body of evidence for effective pedagogical practices.

Pedagogic theory and pedagogical approaches.

Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT IV

Professional development: alignment with classroom practices and follow- up support

Peer support

Support from the head teacher and the community.

Curriculum and assessment

Barriers to learning: limited resources and large class sizes

<u>UNIT V</u>

Research gaps and future directions

Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Text Books:

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

Reference Books:

- 1. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 2. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Web Links:

1. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Title	e STRESS	STRESS MANAGEMENT BY YOGA						Sem
		(Audit	Course					
Course Cod	e Category	Hours/Week Credits			Maximum Marks			
1870A07	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		2	0	0	0	40		40
Μ	id Exam Duratio	n: 2 Ho	urs					
Course Objec	ctives:							
• To ach	ieve overall health	n of bod	y and m	ind.				
• To ove	ercome stress							
Course Outo	comes: On succes	sful con	npletion	of this	s course, tl	he students wil	l be able	to
CO1 Deve	CO 1 Develop healthy mind in a healthy body thus improving social health also							
CO 2 Impr	ove efficiency.							

<u>UNIT I</u>

Definitions of Eight parts of yog. (Ashtanga)

<u>UNIT II</u>

- Yam and Niyam. Do's and Don't's in life.
- i) Ahinsa, satya, astheya, bramhacharya and aparigraha
- ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

<u>UNIT III</u>

- Asan and Pranayam
 - i)Various yog poses and their benefits for mind & body

ii)Regularization of breathing techniques and its effects- Types of pranayam

Text Books:

- 1. 'Yogic Asanas for Group Tarining-Part-I" : Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature".
- 3. Advaitashrama (Publication Department), Kolkata.
- 4. Acharya Yatendra, Yoga & Stress Management, Finger Print Publishing.

Course Title	PERSON THROUG	NALITY H LIFE SK (Audit	DEVEI ENLIGI ILLS Course	M.Tech RE I / II Sem						
Course Code	e Category	Category Hours/Week Credits					Maximum Marks			
1870A08	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		2	0	0	0	40		40		
Mid Exam Duration: 2 Hours										
Course Objec	tives:									
• To learn	to achieve the hig	ghest go	al happi	ly						
• To become	me a person with	stable n	nind, ple	asing p	ersonality	and determinat	ion			
• To awak	ten wisdom in stu	dents.	1 4	8 (1 •						
Course Outco	omes: On succes	stul con	npletion	of this	s course, t	he students wil	l be able	to		
CO1 Stud	y of Shrimad-I	Bhagwad	l-Geeta	will	help the	e student in	developin	g his		
perso	nality and achie	ve the	highest	goal in	n life		-	-		
CO 2 The	person who has	s studie	d Geeta	a will	lead the	nation and ma	inkind to	peace		
and j	prosperity							-		
CO 3 Stud	y of Neetishatak	am wil	l help i	n deve	loping ver	rsatile personal	ity of stu	idents		

<u>UNIT I</u>

- Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

<u>UNIT II</u>

- Approach to day to day work and duties.
- Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

<u>UNIT III</u>

- Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

Text Books:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.
- 3. Enlightenment: Personality Development and management, Sagir Ahmed, Independently Published.